--- license: apache-2.0 base_model: facebook/deit-small-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_small_sgd_001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.3170731707317073 --- # hushem_1x_deit_small_sgd_001_fold5 This model is a fine-tuned version of [facebook/deit-small-patch16-224](https://huggingface.co/facebook/deit-small-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2874 - Accuracy: 0.3171 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.4789 | 0.2683 | | 1.5098 | 2.0 | 12 | 1.4475 | 0.2927 | | 1.5098 | 3.0 | 18 | 1.4244 | 0.2683 | | 1.4415 | 4.0 | 24 | 1.4086 | 0.2683 | | 1.4228 | 5.0 | 30 | 1.3943 | 0.2927 | | 1.4228 | 6.0 | 36 | 1.3837 | 0.2683 | | 1.3818 | 7.0 | 42 | 1.3755 | 0.2439 | | 1.3818 | 8.0 | 48 | 1.3687 | 0.2195 | | 1.3662 | 9.0 | 54 | 1.3625 | 0.2439 | | 1.3382 | 10.0 | 60 | 1.3567 | 0.2439 | | 1.3382 | 11.0 | 66 | 1.3518 | 0.2439 | | 1.3324 | 12.0 | 72 | 1.3466 | 0.2439 | | 1.3324 | 13.0 | 78 | 1.3420 | 0.2439 | | 1.3002 | 14.0 | 84 | 1.3382 | 0.2439 | | 1.2845 | 15.0 | 90 | 1.3339 | 0.2683 | | 1.2845 | 16.0 | 96 | 1.3305 | 0.2683 | | 1.2783 | 17.0 | 102 | 1.3271 | 0.2927 | | 1.2783 | 18.0 | 108 | 1.3237 | 0.3171 | | 1.2896 | 19.0 | 114 | 1.3207 | 0.3171 | | 1.2581 | 20.0 | 120 | 1.3176 | 0.3171 | | 1.2581 | 21.0 | 126 | 1.3151 | 0.3415 | | 1.2555 | 22.0 | 132 | 1.3123 | 0.3415 | | 1.2555 | 23.0 | 138 | 1.3099 | 0.3415 | | 1.2563 | 24.0 | 144 | 1.3076 | 0.3415 | | 1.2461 | 25.0 | 150 | 1.3050 | 0.3415 | | 1.2461 | 26.0 | 156 | 1.3029 | 0.3171 | | 1.2294 | 27.0 | 162 | 1.3009 | 0.3171 | | 1.2294 | 28.0 | 168 | 1.2991 | 0.3171 | | 1.2223 | 29.0 | 174 | 1.2975 | 0.3171 | | 1.2396 | 30.0 | 180 | 1.2961 | 0.3171 | | 1.2396 | 31.0 | 186 | 1.2948 | 0.3171 | | 1.2235 | 32.0 | 192 | 1.2934 | 0.3171 | | 1.2235 | 33.0 | 198 | 1.2923 | 0.3171 | | 1.2018 | 34.0 | 204 | 1.2911 | 0.3171 | | 1.2131 | 35.0 | 210 | 1.2902 | 0.3171 | | 1.2131 | 36.0 | 216 | 1.2895 | 0.3171 | | 1.2105 | 37.0 | 222 | 1.2888 | 0.3171 | | 1.2105 | 38.0 | 228 | 1.2883 | 0.3171 | | 1.1724 | 39.0 | 234 | 1.2879 | 0.3171 | | 1.2168 | 40.0 | 240 | 1.2876 | 0.3171 | | 1.2168 | 41.0 | 246 | 1.2875 | 0.3171 | | 1.1977 | 42.0 | 252 | 1.2874 | 0.3171 | | 1.1977 | 43.0 | 258 | 1.2874 | 0.3171 | | 1.1916 | 44.0 | 264 | 1.2874 | 0.3171 | | 1.21 | 45.0 | 270 | 1.2874 | 0.3171 | | 1.21 | 46.0 | 276 | 1.2874 | 0.3171 | | 1.1885 | 47.0 | 282 | 1.2874 | 0.3171 | | 1.1885 | 48.0 | 288 | 1.2874 | 0.3171 | | 1.2083 | 49.0 | 294 | 1.2874 | 0.3171 | | 1.2106 | 50.0 | 300 | 1.2874 | 0.3171 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1