--- datasets: - homebrewltd/instruction-speech-whispervq-v2 language: - en license: apache-2.0 pipeline_tag: audio-text-to-text tags: - sound language model --- ## Model Details We have developed and released the family [Ichigo-llama3s](https://huggingface.co/collections/homebrew-research/llama3-s-669df2139f0576abc6eb7405). This family is natively understanding audio and text input. This model focused on fine-tuning the model to improve user interaction from [homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-2](https://huggingface.co/homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-2), particularly in handling inaudible inputs and multi-turn conversations. **Model developers** Homebrew Research. **Input** Text and sound. **Output** Text. **Model Architecture** Llama-3. **Language(s):** English. ## Intended Use **Intended Use Cases** This family is primarily intended for research applications. This version aims to further improve the LLM on sound understanding capabilities. **Out-of-scope** The use of llama3-s in any manner that violates applicable laws or regulations is strictly prohibited. ## How to Get Started with the Model Try this model using [Google Colab Notebook](https://colab.research.google.com/drive/18IiwN0AzBZaox5o0iidXqWD1xKq11XbZ?usp=sharing). First, we need to convert the audio file to sound tokens ```python device = "cuda" if torch.cuda.is_available() else "cpu" if not os.path.exists("whisper-vq-stoks-medium-en+pl-fixed.model"): hf_hub_download( repo_id="jan-hq/WhisperVQ", filename="whisper-vq-stoks-medium-en+pl-fixed.model", local_dir=".", ) vq_model = RQBottleneckTransformer.load_model( "whisper-vq-stoks-medium-en+pl-fixed.model" ).to(device) vq_model.ensure_whisper(device) def audio_to_sound_tokens(audio_path, target_bandwidth=1.5, device=device): wav, sr = torchaudio.load(audio_path) if sr != 16000: wav = torchaudio.functional.resample(wav, sr, 16000) with torch.no_grad(): codes = vq_model.encode_audio(wav.to(device)) codes = codes[0].cpu().tolist() result = ''.join(f'<|sound_{num:04d}|>' for num in codes) return f'<|sound_start|>{result}<|sound_end|>' ``` Then, we can inference the model the same as any other LLM. ```python def setup_pipeline(model_path, use_4bit=False, use_8bit=False): tokenizer = AutoTokenizer.from_pretrained(model_path) model_kwargs = {"device_map": "auto"} if use_4bit: model_kwargs["quantization_config"] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) elif use_8bit: model_kwargs["quantization_config"] = BitsAndBytesConfig( load_in_8bit=True, bnb_8bit_compute_dtype=torch.bfloat16, bnb_8bit_use_double_quant=True, ) else: model_kwargs["torch_dtype"] = torch.bfloat16 model = AutoModelForCausalLM.from_pretrained(model_path, **model_kwargs) return pipeline("text-generation", model=model, tokenizer=tokenizer) def generate_text(pipe, messages, max_new_tokens=64, temperature=0.0, do_sample=False): generation_args = { "max_new_tokens": max_new_tokens, "return_full_text": False, "temperature": temperature, "do_sample": do_sample, } output = pipe(messages, **generation_args) return output[0]['generated_text'] # Usage llm_path = "homebrewltd/llama3.1-s-instruct-v0.2" pipe = setup_pipeline(llm_path, use_8bit=True) ``` ## Training process **Training Metrics Image**: Below is a snapshot of the training loss curve visualized. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65713d70f56f9538679e5a56/7TWPqLdDLDlfzeRXP9m36.png) **[MMLU](https://huggingface.co/datasets/cais/mmlu)**: | Model | MMLU Score | | --- | --- | | llama3.5-instruct-8b | 69.40 | | ichigo-llama3.1-s-v0.3: phase 3 | **63.79** | | ichigo-llama3.1-s-v0.3: phase 2 | 63.08 | | ichigo-llama3.1-s-base-v0.3 | 42.11 | | llama3.5-instruct-v0.2 | 50.27 | **[AudioBench](https://arxiv.org/abs/2406.16020) Eval**: | Model Bench | [Open-hermes Instruction Audio](https://huggingface.co/datasets/AudioLLMs/openhermes_instruction_test) (GPT-4-O judge 0:5) | [Alpaca Instruction Audio](https://huggingface.co/datasets/AudioLLMs/alpaca_audio_test) (GPT-4-O judge 0:5) | | --- | --- | --- | | [Llama3.1-s-v2](https://huggingface.co/homebrewltd/llama3-s-instruct-v0.2) | 3.45 | 3.53 | | [Ichigo-llama3.1-s v0.3-phase2 -cp7000](https://huggingface.co/homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-2) | 3.42 | 3.62 | | [Ichigo-llama3.1-s v0.3-phase2-cplast](https://huggingface.co/jan-hq/llama3-s-instruct-v0.3-checkpoint-last) | 3.31 | 3.6 | | [Ichigo-llama3.1-s v0.3-phase3](https://huggingface.co/homebrewltd/Ichigo-llama3.1-s-instruct-v0.3-phase-3) | **3.64** | **3.68** | | [Qwen2-audio-7B](https://huggingface.co/Qwen/Qwen2-Audio-7B) | 2.63 | 2.24 | ### Hardware **GPU Configuration**: Cluster of 8x NVIDIA H100-SXM-80GB. **GPU Usage**: - **Continual Training**: 3 hours. ### Training Arguments We utilize [torchtune](https://github.com/pytorch/torchtune) library for the latest FSDP2 training code implementation. | **Parameter** | **Continual Training** | | --- | --- | | **Epoch** | 1 | | **Global batch size** | 256 | | **Learning Rate** | 1.5e-5 | | **Learning Scheduler** | LambdaLR with warmup | | **Optimizer** | [AdamW Fused](https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html) | | **Warmup Steps** | 8 | | **Weight Decay** | 0.005 | | **Max length** | 4096 | | **Precision** | bf16 | ## More detail Paper: http://arxiv.org/abs/2410.15316 ## Citation Information **BibTeX:** ``` @article{Llama3-S: Sound Instruction Language Model 2024, title={Llama3-S}, author={Homebrew Research}, year=2024, month=August}, url={https://huggingface.co/homebrewltd/llama3.1-s-2024-08-20} ``` ## Acknowledgement - **[WhisperSpeech](https://github.com/collabora/WhisperSpeech)** - **[Meta-Llama-3.1-8B-Instruct ](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)**