--- license: other library_name: transformers tags: - llama-factory - full - generated_from_trainer base_model: hon9kon9ize/CantoneseLLM-v1.0 model-index: - name: CantoneseLLMChat-v1.0-7B results: [] --- # CantoneseLLMChat-v1.0-7B This model is a fine-tuned version of [hon9kon9ize/CantoneseLLM-v1.0](https://huggingface.co/hon9kon9ize/CantoneseLLM-v1.0) on the sft_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.9464 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.3 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3332 | 0.0480 | 100 | 1.3140 | | 1.2185 | 0.0960 | 200 | 1.2879 | | 1.1976 | 0.1439 | 300 | 1.2533 | | 1.1627 | 0.1919 | 400 | 1.2169 | | 1.178 | 0.2399 | 500 | 1.1766 | | 1.133 | 0.2879 | 600 | 1.1296 | | 1.0466 | 0.3359 | 700 | 1.0983 | | 1.0657 | 0.3839 | 800 | 1.0770 | | 1.054 | 0.4318 | 900 | 1.0617 | | 1.0744 | 0.4798 | 1000 | 1.0487 | | 0.9977 | 0.5278 | 1100 | 1.0383 | | 0.9778 | 0.5758 | 1200 | 1.0290 | | 1.0187 | 0.6238 | 1300 | 1.0211 | | 1.085 | 0.6717 | 1400 | 1.0131 | | 0.958 | 0.7197 | 1500 | 1.0072 | | 1.0482 | 0.7677 | 1600 | 1.0007 | | 0.9447 | 0.8157 | 1700 | 0.9946 | | 1.0 | 0.8637 | 1800 | 0.9894 | | 0.9685 | 0.9117 | 1900 | 0.9849 | | 0.8576 | 0.9596 | 2000 | 0.9807 | | 0.8853 | 1.0076 | 2100 | 0.9775 | | 0.947 | 1.0556 | 2200 | 0.9739 | | 0.9207 | 1.1036 | 2300 | 0.9713 | | 0.8596 | 1.1516 | 2400 | 0.9691 | | 1.0277 | 1.1995 | 2500 | 0.9655 | | 0.9646 | 1.2475 | 2600 | 0.9631 | | 0.8583 | 1.2955 | 2700 | 0.9613 | | 0.9367 | 1.3435 | 2800 | 0.9589 | | 0.9146 | 1.3915 | 2900 | 0.9570 | | 0.9697 | 1.4395 | 3000 | 0.9556 | | 0.8713 | 1.4874 | 3100 | 0.9542 | | 0.9855 | 1.5354 | 3200 | 0.9524 | | 0.8651 | 1.5834 | 3300 | 0.9511 | | 0.9448 | 1.6314 | 3400 | 0.9495 | | 0.8997 | 1.6794 | 3500 | 0.9485 | | 1.0446 | 1.7273 | 3600 | 0.9475 | | 0.8862 | 1.7753 | 3700 | 0.9465 | | 0.873 | 1.8233 | 3800 | 0.9456 | | 0.9893 | 1.8713 | 3900 | 0.9448 | | 0.8915 | 1.9193 | 4000 | 0.9442 | | 0.8854 | 1.9673 | 4100 | 0.9435 | | 0.7608 | 2.0152 | 4200 | 0.9447 | | 0.796 | 2.0632 | 4300 | 0.9464 | | 0.9225 | 2.1112 | 4400 | 0.9467 | | 0.9901 | 2.1592 | 4500 | 0.9467 | | 0.9263 | 2.2072 | 4600 | 0.9468 | | 0.7735 | 2.2551 | 4700 | 0.9467 | | 0.8454 | 2.3031 | 4800 | 0.9464 | | 0.8562 | 2.3511 | 4900 | 0.9466 | | 0.8923 | 2.3991 | 5000 | 0.9464 | | 0.7529 | 2.4471 | 5100 | 0.9463 | | 0.8421 | 2.4951 | 5200 | 0.9463 | | 0.8578 | 2.5430 | 5300 | 0.9463 | | 0.8143 | 2.5910 | 5400 | 0.9464 | | 0.8117 | 2.6390 | 5500 | 0.9463 | | 0.861 | 2.6870 | 5600 | 0.9464 | | 0.8415 | 2.7350 | 5700 | 0.9463 | | 0.7846 | 2.7829 | 5800 | 0.9463 | | 0.7605 | 2.8309 | 5900 | 0.9464 | | 0.8721 | 2.8789 | 6000 | 0.9464 | | 0.8566 | 2.9269 | 6100 | 0.9464 | | 0.7978 | 2.9749 | 6200 | 0.9464 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.4.1+cu121 - Datasets 2.20.0 - Tokenizers 0.20.0 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_hon9kon9ize__CantoneseLLMChat-v1.0-7B) | Metric |Value| |-------------------|----:| |Avg. |22.98| |IFEval (0-Shot) |44.55| |BBH (3-Shot) |28.54| |MATH Lvl 5 (4-Shot)|17.90| |GPQA (0-shot) | 9.62| |MuSR (0-shot) | 6.30| |MMLU-PRO (5-shot) |30.94|