--- license: other library_name: transformers tags: - llama-factory - full - generated_from_trainer base_model: hon9kon9ize/CantoneseLLM-v1.0 model-index: - name: CantoneseLLMChat-v1.0-7B results: [] --- # CantoneseLLMChat-v1.0-7B ![front_image](cantonese_llm_v1.jpg) Cantonese LLM Chat v1.0 is the first generation Cantonese LLM from hon0kon9ize. Building upon the sucess of [v0.5 preview](https://huggingface.co/hon9kon9ize/CantoneseLLMChat-v0.5), the model excels in Hong Kong related specific knowledge and Cantonese conversation. ## Model description Base model obtained via Continuous Pre-Training of [Qwen 2.5 7B](https://huggingface.co/Qwen/Qwen2.5-7B) with 600 millions publicaly available Hong Kong news articles and Cantonese websites. Instructions fine-tuned model trained with a dataset consists of 75,000 instrutions pairs. 45,000 pairs were Cantonese insturctions generated by other LLMs and reviewed by humans. The model trained with 1 Nvidia H100 80GB HBM3 GPU on [Genkai Supercomputer](https://www.cc.kyushu-u.ac.jp/scp/eng/system/Genkai/hardware/). ## Basic Usage ``` import torch from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "hon9kon9ize/CantoneseLLMChat-v1.0-7B" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ) def chat(messages, temperature=0.9, max_new_tokens=200): input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt').to('cuda:0') output_ids = model.generate(input_ids, max_new_tokens=max_new_tokens, temperature=temperature) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=False) return response prompt = "邊個係香港特首?" messages = [ {"role": "system", "content": "you are a helpful assistant."}, {"role": "user", "content": prompt} ] print(chat(messages)) # 香港特別行政區行政長官係李家超。<|im_end|> ```