--- license: mit base_model: MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli tags: - generated_from_trainer datasets: - sem_eval_2024_task_2 metrics: - accuracy - precision - recall - f1 model-index: - name: results2 results: - task: name: Text Classification type: text-classification dataset: name: sem_eval_2024_task_2 type: sem_eval_2024_task_2 config: sem_eval_2024_task_2_source split: validation args: sem_eval_2024_task_2_source metrics: - name: Accuracy type: accuracy value: 0.715 - name: Precision type: precision value: 0.7186959617536364 - name: Recall type: recall value: 0.7150000000000001 - name: F1 type: f1 value: 0.7137907659862921 --- # results2 This model is a fine-tuned version of [MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli](https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli) on the sem_eval_2024_task_2 dataset. It achieves the following results on the evaluation set: - Loss: 1.7766 - Accuracy: 0.715 - Precision: 0.7187 - Recall: 0.7150 - F1: 0.7138 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6998 | 1.0 | 107 | 0.6713 | 0.6 | 0.6214 | 0.6000 | 0.5815 | | 0.7015 | 2.0 | 214 | 0.6502 | 0.68 | 0.7143 | 0.6800 | 0.6667 | | 0.6755 | 3.0 | 321 | 0.6740 | 0.53 | 0.6579 | 0.53 | 0.4107 | | 0.6605 | 4.0 | 428 | 0.6061 | 0.64 | 0.6502 | 0.64 | 0.6338 | | 0.5918 | 5.0 | 535 | 0.5675 | 0.695 | 0.7023 | 0.6950 | 0.6922 | | 0.5717 | 6.0 | 642 | 0.5945 | 0.685 | 0.6953 | 0.685 | 0.6808 | | 0.4655 | 7.0 | 749 | 0.5644 | 0.68 | 0.6801 | 0.6800 | 0.6800 | | 0.3407 | 8.0 | 856 | 0.7529 | 0.7 | 0.7029 | 0.7 | 0.6989 | | 0.3539 | 9.0 | 963 | 0.7211 | 0.69 | 0.6901 | 0.69 | 0.6900 | | 0.2695 | 10.0 | 1070 | 0.7760 | 0.685 | 0.6905 | 0.685 | 0.6827 | | 0.1666 | 11.0 | 1177 | 1.1053 | 0.71 | 0.7188 | 0.71 | 0.7071 | | 0.1648 | 12.0 | 1284 | 1.1662 | 0.72 | 0.7258 | 0.72 | 0.7182 | | 0.1229 | 13.0 | 1391 | 1.2760 | 0.735 | 0.7438 | 0.735 | 0.7326 | | 0.0737 | 14.0 | 1498 | 1.5943 | 0.7 | 0.7029 | 0.7 | 0.6989 | | 0.1196 | 15.0 | 1605 | 1.5407 | 0.705 | 0.7085 | 0.7050 | 0.7037 | | 0.0389 | 16.0 | 1712 | 1.6411 | 0.69 | 0.7016 | 0.69 | 0.6855 | | 0.0199 | 17.0 | 1819 | 1.7139 | 0.685 | 0.6919 | 0.685 | 0.6821 | | 0.0453 | 18.0 | 1926 | 1.6549 | 0.71 | 0.7121 | 0.71 | 0.7093 | | 0.0536 | 19.0 | 2033 | 1.7612 | 0.71 | 0.7142 | 0.71 | 0.7086 | | 0.0035 | 20.0 | 2140 | 1.7766 | 0.715 | 0.7187 | 0.7150 | 0.7138 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0