--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - honzapucalek/hc_train_v3_independent_v2 metrics: - wer model-index: - name: hc-train-v3-independent-v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: honzapucalek/hc_train_v3_independent_v2 cs type: honzapucalek/hc_train_v3_independent_v2 config: cs split: test args: cs metrics: - name: Wer type: wer value: 0.1169068862960421 --- # hc-train-v3-independent-v2 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the honzapucalek/hc_train_v3_independent_v2 cs dataset. It achieves the following results on the evaluation set: - Loss: 0.3728 - Wer: 0.1169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0079 | 13.51 | 1000 | 0.2854 | 0.1256 | | 0.0037 | 27.03 | 2000 | 0.3198 | 0.1373 | | 0.0002 | 40.54 | 3000 | 0.3459 | 0.1177 | | 0.0001 | 54.05 | 4000 | 0.3650 | 0.1168 | | 0.0001 | 67.57 | 5000 | 0.3728 | 0.1169 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1