--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: videomae-base-finetuned-ucf101-subset-face results: [] --- # videomae-base-finetuned-ucf101-subset-face This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.5315 - Accuracy: 0.6389 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 3 - eval_batch_size: 3 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 2000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.8253 | 9.005 | 100 | 1.7977 | 0.1667 | | 1.6427 | 19.005 | 200 | 2.1211 | 0.1667 | | 1.0603 | 29.005 | 300 | 2.5370 | 0.1944 | | 0.6361 | 39.005 | 400 | 1.9683 | 0.4444 | | 0.7149 | 49.005 | 500 | 2.8125 | 0.3889 | | 0.3396 | 59.005 | 600 | 2.2497 | 0.5556 | | 0.3026 | 69.005 | 700 | 1.7178 | 0.6389 | | 0.3043 | 79.005 | 800 | 2.5029 | 0.6111 | | 0.1636 | 89.005 | 900 | 2.7748 | 0.6111 | | 0.1292 | 99.005 | 1000 | 2.1868 | 0.6389 | | 0.5229 | 109.005 | 1100 | 2.4543 | 0.6111 | | 0.0016 | 119.005 | 1200 | 1.7452 | 0.75 | | 0.0013 | 129.005 | 1300 | 2.5026 | 0.6111 | | 0.0011 | 139.005 | 1400 | 2.3153 | 0.6389 | | 0.0011 | 149.005 | 1500 | 1.7536 | 0.75 | | 0.0028 | 159.005 | 1600 | 2.5384 | 0.6389 | | 0.0605 | 169.005 | 1700 | 2.6368 | 0.6111 | | 0.2064 | 179.005 | 1800 | 2.3678 | 0.6667 | | 0.0013 | 189.005 | 1900 | 2.4561 | 0.6389 | | 0.0009 | 199.005 | 2000 | 2.5315 | 0.6389 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.4.1+cu118 - Datasets 3.0.0 - Tokenizers 0.20.0