--- base_model: google/gemma-2-9b-it license: gemma language: - en library_name: transformers pipeline_tag: text-generation tags: - gemma2 - google - autoawq --- > [!IMPORTANT] > This repository is a community-driven quantized version of the original model [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) which is the BF16 half-precision official version released by Google. > [!WARNING] > This model has been quantized using `transformers` 4.45.0, meaning that the tokenizer available in this repository won't be compatible with lower versions. Same applies for e.g. Text Generation Inference (TGI) that only installs `transformers` 4.45.0 or higher starting in v2.3.1. ## Model Information Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights for both pre-trained variants and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. This repository contains [`google/gemma-2-9b-it`](https://huggingface.co/google/gemma-2-9b-it) quantized using [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) from FP16 down to INT4 using the GEMM kernels performing zero-point quantization with a group size of 128. ## Model Usage > [!NOTE] > In order to run the inference with Gemma2 9B Instruct AWQ in INT4, around 6 GiB of VRAM are needed only for loading the model checkpoint, without including the KV cache or the CUDA graphs, meaning that there should be a bit over that VRAM available. In order to use the current quantized model, support is offered for different solutions as `transformers`, `autoawq`, or `text-generation-inference`. ### 🤗 Transformers In order to run the inference with Gemma2 9B Instruct AWQ in INT4, you need to install the following packages: ```bash pip install -q --upgrade "transformers>=4.45.0" accelerate INSTALL_KERNELS=1 pip install -q git+https://github.com/casper-hansen/AutoAWQ.git@79547665bdb27768a9b392ef375776b020acbf0c ``` To run the inference on top of Gemma2 9B Instruct AWQ in INT4 precision, the AWQ model can be instantiated as any other causal language modeling model via `AutoModelForCausalLM` and run the inference normally. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AwqConfig model_id = "hugging-quants/gemma-2-9b-it-AWQ-INT4" quantization_config = AwqConfig( bits=4, fuse_max_seq_len=512, # Note: Update this as per your use-case do_fuse=True, ) tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto", quantization_config=quantization_config ) prompt = [ {"role": "user", "content": "What's Deep Learning?"}, ] inputs = tokenizer.apply_chat_template( prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True, ).to("cuda") outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0]) ``` ### AutoAWQ In order to run the inference with Gemma2 9B Instruct AWQ in INT4, you need to install the following packages: ```bash pip install -q --upgrade "transformers>=4.45.0" accelerate INSTALL_KERNELS=1 pip install -q git+https://github.com/casper-hansen/AutoAWQ.git@79547665bdb27768a9b392ef375776b020acbf0c ``` Alternatively, one may want to run that via `AutoAWQ` even though it's built on top of 🤗 `transformers`, which is the recommended approach instead as described above. ```python import torch from awq import AutoAWQForCausalLM from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "hugging-quants/gemma-2-9b-it-AWQ-INT4" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoAWQForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto", ) prompt = [ {"role": "user", "content": "What's Deep Learning?"}, ] inputs = tokenizer.apply_chat_template( prompt, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True, ).to("cuda") outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256) print(tokenizer.batch_decode(outputs[:, inputs['input_ids'].shape[1]:], skip_special_tokens=True)[0]) ``` The AutoAWQ script has been adapted from [`AutoAWQ/examples/generate.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/generate.py). ### 🤗 Text Generation Inference (TGI) To run the `text-generation-launcher` with Gemma2 9B Instruct AWQ in INT4 with Marlin kernels for optimized inference speed, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)). Then you just need to run the TGI v2.3.0 (or higher) Docker container as follows: ```bash docker run --gpus all --shm-size 1g -ti -p 8080:80 \ -v hf_cache:/data \ -e MODEL_ID=hugging-quants/gemma-2-9b-it-AWQ-INT4 \ -e QUANTIZE=awq \ -e MAX_INPUT_LENGTH=4000 \ -e MAX_TOTAL_TOKENS=4096 \ ghcr.io/huggingface/text-generation-inference:2.3.0 ``` > [!NOTE] > TGI will expose different endpoints, to see all the endpoints available check [TGI OpenAPI Specification](https://huggingface.github.io/text-generation-inference/#/). To send request to the deployed TGI endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`: ```bash curl 0.0.0.0:8080/v1/chat/completions \ -X POST \ -H 'Content-Type: application/json' \ -d '{ "model": "tgi", "messages": [ { "role": "user", "content": "What is Deep Learning?" } ], "max_tokens": 128 }' ``` Or programatically via the `huggingface_hub` Python client as follows: ```python import os from huggingface_hub import InferenceClient client = InferenceClient(base_url="http://0.0.0.0:8080", api_key="-") chat_completion = client.chat.completions.create( model="hugging-quants/gemma-2-9b-it-AWQ-INT4", messages=[ {"role": "user", "content": "What is Deep Learning?"}, ], max_tokens=128, ) ``` Alternatively, the OpenAI Python client can also be used (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows: ```python import os from openai import OpenAI client = OpenAI(base_url="http://0.0.0.0:8080/v1", api_key="-") chat_completion = client.chat.completions.create( model="tgi", messages=[ {"role": "user", "content": "What is Deep Learning?"}, ], max_tokens=128, ) ``` ### vLLM To run vLLM with Gemma2 9B Instruct AWQ in INT4, you will need to have Docker installed (see [installation notes](https://docs.docker.com/engine/install/)) and run the latest vLLM Docker container as follows: ```bash docker run --runtime nvidia --gpus all --ipc=host -p 8000:8000 \ -v hf_cache:/root/.cache/huggingface \ vllm/vllm-openai:latest \ --model hugging-quants/gemma-2-9b-it-AWQ-INT4 \ --max-model-len 4096 ``` To send request to the deployed vLLM endpoint compatible with [OpenAI OpenAPI specification](https://github.com/openai/openai-openapi) i.e. `/v1/chat/completions`: ```bash curl 0.0.0.0:8000/v1/chat/completions \ -X POST \ -H 'Content-Type: application/json' \ -d '{ "model": "hugging-quants/gemma-2-9b-it-AWQ-INT4", "messages": [ { "role": "user", "content": "What is Deep Learning?" } ], "max_tokens": 128 }' ``` Or programatically via the `openai` Python client (see [installation notes](https://github.com/openai/openai-python?tab=readme-ov-file#installation)) as follows: ```python import os from openai import OpenAI client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key=os.getenv("VLLM_API_KEY", "-")) chat_completion = client.chat.completions.create( model="hugging-quants/gemma-2-9b-it-AWQ-INT4", messages=[ {"role": "user", "content": "What is Deep Learning?"}, ], max_tokens=128, ) ``` ## Quantization Reproduction > [!IMPORTANT] > In order to quantize Gemma2 9B Instruct using AutoAWQ, you will need to use an instance with at least enough CPU RAM to fit the whole model i.e. ~20GiB, and an NVIDIA GPU with 16GiB of VRAM to quantize it. > > Additionally, you also need to accept the Gemma2 access conditions, as it is a gated model that requires accepting those first. In order to quantize Gemma2 9B Instruct, first install the following packages: ```bash pip install -q --upgrade "torch==2.3.0" "transformers>=4.45.0" accelerate INSTALL_KERNELS=1 pip install -q git+https://github.com/casper-hansen/AutoAWQ.git@79547665bdb27768a9b392ef375776b020acbf0c ``` Then you need to install the `huggingface_hub` Python SDK and login to the Hugging Face Hub. ```bash pip install -q --upgrade huggingface_hub huggingface-cli login ``` Then run the following script, adapted from [`AutoAWQ/examples/quantize.py`](https://github.com/casper-hansen/AutoAWQ/blob/main/examples/quantize.py): ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer model_path = "google/gemma-2-9b-it" quant_path = "hugging-quants/gemma-2-9b-it-AWQ-INT4" quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM", } # Load model model = AutoAWQForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, use_cache=False, ) tokenizer = AutoTokenizer.from_pretrained(model_path) # Quantize model.quantize(tokenizer, quant_config=quant_config) # Save quantized model model.save_quantized(quant_path) tokenizer.save_pretrained(quant_path) print(f'Model is quantized and saved at "{quant_path}"') ```