--- library_name: transformers license: apache-2.0 base_model: HuggingFaceTB/SmolLM2-360M tags: - generated_from_trainer metrics: - f1 model-index: - name: SmolLM2-360M-TemporalQuestions results: [] --- # SmolLM2-360M-TemporalQuestions This model is a fine-tuned version of [HuggingFaceTB/SmolLM2-360M](https://huggingface.co/HuggingFaceTB/SmolLM2-360M) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0257 - F1: 0.9846 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 1024 - total_eval_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.086 | 1.0 | 223 | 0.0629 | 0.9514 | | 0.1263 | 2.0 | 446 | 0.0466 | 0.9647 | | 0.0172 | 3.0 | 669 | 0.0351 | 0.9745 | | 0.0729 | 4.0 | 892 | 0.0319 | 0.9770 | | 0.0254 | 5.0 | 1115 | 0.0320 | 0.9788 | | 0.0258 | 6.0 | 1338 | 0.0288 | 0.9798 | | 0.017 | 7.0 | 1561 | 0.0302 | 0.9812 | | 0.0278 | 8.0 | 1784 | 0.0302 | 0.9807 | | 0.0105 | 9.0 | 2007 | 0.0338 | 0.9797 | | 0.0503 | 10.0 | 2230 | 0.0297 | 0.9808 | | 0.0148 | 11.0 | 2453 | 0.0257 | 0.9846 | | 0.0005 | 12.0 | 2676 | 0.0305 | 0.9822 | | 0.0052 | 13.0 | 2899 | 0.0282 | 0.9853 | | 0.0012 | 14.0 | 3122 | 0.0317 | 0.9837 | | 0.0095 | 15.0 | 3345 | 0.0338 | 0.9859 | | 0.0004 | 16.0 | 3568 | 0.0307 | 0.9865 | | 0.0003 | 17.0 | 3791 | 0.0336 | 0.9856 | | 0.0074 | 18.0 | 4014 | 0.0338 | 0.9855 | | 0.0003 | 19.0 | 4237 | 0.0327 | 0.9864 | | 0.0003 | 20.0 | 4460 | 0.0353 | 0.9858 | | 0.0001 | 21.0 | 4683 | 0.0377 | 0.9858 | | 0.0001 | 22.0 | 4906 | 0.0380 | 0.9870 | | 0.0001 | 23.0 | 5129 | 0.0389 | 0.9866 | | 0.0001 | 24.0 | 5352 | 0.0399 | 0.9866 | | 0.0001 | 25.0 | 5575 | 0.0404 | 0.9866 | | 0.0001 | 26.0 | 5798 | 0.0408 | 0.9867 | | 0.0001 | 27.0 | 6021 | 0.0409 | 0.9867 | | 0.0002 | 28.0 | 6244 | 0.0411 | 0.9867 | | 0.0001 | 29.0 | 6467 | 0.0411 | 0.9867 | | 0.0023 | 29.8691 | 6660 | 0.0412 | 0.9867 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.1 - Tokenizers 0.21.0