--- tags: - flair - entity-mention-linker --- ## sapbert-ncbi-taxonomy-no-ab3p Biomedical Entity Mention Linking for UMLS. We use this model for species since NCBI Taxonomy is contained in UMLS: - Model: [cambridgeltl/SapBERT-from-PubMedBERT-fulltext](https://huggingface.co/cambridgeltl/SapBERT-from-PubMedBERT-fulltext) - Dictionary: [NCBI Taxonomy](https://www.ncbi.nlm.nih.gov/taxonomy) (See [FTP](https://ftp.ncbi.nih.gov/pub/taxonomy/new_taxdump/)) NOTE: This model variant does not perform abbreviation resolution via [A3bP](https://github.com/ncbi-nlp/Ab3P) ### Demo: How to use in Flair Requires: - **[Flair](https://github.com/flairNLP/flair/)>=0.14.0** (`pip install flair` or `pip install git+https://github.com/flairNLP/flair.git`) ```python from flair.data import Sentence from flair.models import Classifier, EntityMentionLinker from flair.tokenization import SciSpacyTokenizer sentence = Sentence( "The mutation in the ABCD1 gene causes X-linked adrenoleukodystrophy, " "a neurodegenerative disease, which is exacerbated by exposure to high " "levels of mercury in dolphin populations.", use_tokenizer=SciSpacyTokenizer() ) # load hunflair to detect the entity mentions we want to link. tagger = Classifier.load("hunflair-species") tagger.predict(sentence) # load the linker and dictionary linker = EntityMentionLinker.load("species-linker-no-abbres") linker.predict(sentence) # print the results for each entity mention: for span in sentence.get_spans(tagger.label_type): for link in span.get_labels(linker.label_type): print(f"{span.text} -> {link.value}") ``` As an alternative to downloading the already precomputed model (much storage). You can also build the model and compute the embeddings for the dataset using: ```python from flair.models.entity_mention_linking import BioSynEntityPreprocessor linker = EntityMentionLinker.build("cambridgeltl/SapBERT-from-PubMedBERT-fulltext", dictionary_name_or_path="ncbi-taxonomy", entity_type="species", preprocessor=BioSynEntityPreprocessor(), hybrid_search=False) ``` This will reduce the download requirements, at the cost of computation. Note `hybrid_search=False` as SapBERT unlike BioSyn is trained only for dense retrieval.