from mivolo_model import MiVOLOModel import torch import torchvision.transforms as transforms from ultralytics import YOLO from PIL import Image import numpy as np import os import requests def download_files_to_cache(urls, file_names, cache_dir_name="age_estimation"): def download_file(url, save_path): response = requests.get(url, stream=True) response.raise_for_status() # Check if the download was successful with open(save_path, 'wb') as file: for chunk in response.iter_content(chunk_size=8192): file.write(chunk) print(f"File downloaded and saved to {save_path}") # Định nghĩa đường dẫn tới thư mục cache cache_dir = os.path.join(os.path.expanduser("~"), ".cache", cache_dir_name) # Tạo thư mục cache nếu chưa tồn tại os.makedirs(cache_dir, exist_ok=True) # Tải các file nếu chưa tồn tại for url, file_name in zip(urls, file_names): save_path = os.path.join(cache_dir, file_name) if not os.path.exists(save_path): print(f"File {file_name} does not exist. Downloading...") download_file(url, save_path) else: print(f"File {file_name} already exists at {save_path}") # URL của các file cần tải urls = [ "https://huggingface.co/hungdang1610/estimate_age/resolve/main/models/best_model_weights_10.pth?download=true", "https://huggingface.co/hungdang1610/estimate_age/resolve/main/models/yolov8x_person_face.pt?download=true" ] # Định nghĩa tên file tương ứng để lưu file_names = [ "best_model_weights_10.pth", "yolov8x_person_face.pt" ] model_path = os.path.join(os.path.expanduser("~"), ".cache/age_estimation/best_model_weights_10.pth") detection_path = os.path.join(os.path.expanduser("~"), ".cache/age_estimation/yolov8x_person_face.pt") # Gọi hàm để tải file download_files_to_cache(urls, file_names) IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406) IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225) MEAN_TRAIN = 36.64 STD_TRAIN = 21.74 model = MiVOLOModel( layers=(4, 4, 8, 2), img_size=224, in_chans=6, num_classes=3, patch_size=8, stem_hidden_dim=64, embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), ).to('cpu') state = torch.load(model_path, map_location="cpu") model.load_state_dict(state, strict=True) # model = torch.load("models/model.pth") transform_infer = transforms.Compose([ transforms.Resize((224, 224), interpolation=transforms.InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) detector = YOLO(detection_path) def chunk_then_stack(image): # image = Image.open(image_path).convert("RGB") image_np = np.array(image) results = detector.predict(image_np, conf=0.35) for result in results: boxes = result.boxes # Khởi tạo các giá trị ban đầu face_coords = [None, None, None, None] person_coords = [None, None, None, None] # Lấy tọa độ của bounding boxes for i, box in enumerate(boxes.xyxy): cls = int(boxes.cls[i].item()) x_min, y_min, x_max, y_max = map(int, box.tolist()) # Chuyển tọa độ sang int # Lưu tọa độ vào đúng trường tương ứng if cls == 1: # Face face_coords = [x_min, y_min, x_max, y_max] elif cls == 0: # Person person_coords = [x_min, y_min, x_max, y_max] return face_coords, person_coords def tranfer_image(image): # image = Image.open(img_path).convert('RGB') face_coords, person_coords = chunk_then_stack(image) face_image = image.crop((int(face_coords[0]), int(face_coords[1]), int(face_coords[2]), int(face_coords[3]))) person_image = image.crop((int(person_coords[0]), int(person_coords[1]), int(person_coords[2]), int(person_coords[3]))) # Resize ảnh về (224, 224) face_image = face_image.resize((224, 224)) person_image = person_image.resize((224, 224)) face_image = transform_infer(face_image) person_image = transform_infer(person_image) image_ = torch.cat((face_image, person_image), dim=0) return image_.unsqueeze(0) image = Image.open("1.jpg").convert('RGB') image_ = tranfer_image(image) print(image_.shape) import time start_time = time.time() output = model(image_) output_mse = output[:, 2] predicted_age = output_mse.item() *STD_TRAIN + MEAN_TRAIN print("inference time: ", time.time() - start_time) print("predicted_age: ", predicted_age)