""" Code adapted from timm https://github.com/huggingface/pytorch-image-models Modifications and additions for mivolo by / Copyright 2023, Irina Tolstykh, Maxim Kuprashevich """ import torch import torch.nn as nn from cross_bottleneck_attn import CrossBottleneckAttn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import trunc_normal_ from timm.models._builder import build_model_with_cfg from timm.models._registry import register_model from timm.models.volo import VOLO __all__ = ["MiVOLOModel"] # model_registry will add each entrypoint fn to this def _cfg(url="", **kwargs): return { "url": url, "num_classes": 1000, "input_size": (3, 224, 224), "pool_size": None, "crop_pct": 0.96, "interpolation": "bicubic", "fixed_input_size": True, "mean": IMAGENET_DEFAULT_MEAN, "std": IMAGENET_DEFAULT_STD, "first_conv": None, "classifier": ("head", "aux_head"), **kwargs, } default_cfgs = { "mivolo_d1_224": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d1_224_84.2.pth.tar", crop_pct=0.96 ), "mivolo_d1_384": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d1_384_85.2.pth.tar", crop_pct=1.0, input_size=(3, 384, 384), ), "mivolo_d2_224": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d2_224_85.2.pth.tar", crop_pct=0.96 ), "mivolo_d2_384": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d2_384_86.0.pth.tar", crop_pct=1.0, input_size=(3, 384, 384), ), "mivolo_d3_224": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d3_224_85.4.pth.tar", crop_pct=0.96 ), "mivolo_d3_448": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d3_448_86.3.pth.tar", crop_pct=1.0, input_size=(3, 448, 448), ), "mivolo_d4_224": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d4_224_85.7.pth.tar", crop_pct=0.96 ), "mivolo_d4_448": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d4_448_86.79.pth.tar", crop_pct=1.15, input_size=(3, 448, 448), ), "mivolo_d5_224": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d5_224_86.10.pth.tar", crop_pct=0.96 ), "mivolo_d5_448": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d5_448_87.0.pth.tar", crop_pct=1.15, input_size=(3, 448, 448), ), "mivolo_d5_512": _cfg( url="https://github.com/sail-sg/volo/releases/download/volo_1/d5_512_87.07.pth.tar", crop_pct=1.15, input_size=(3, 512, 512), ), } def get_output_size(input_shape, conv_layer): padding = conv_layer.padding dilation = conv_layer.dilation kernel_size = conv_layer.kernel_size stride = conv_layer.stride output_size = [ ((input_shape[i] + 2 * padding[i] - dilation[i] * (kernel_size[i] - 1) - 1) // stride[i]) + 1 for i in range(2) ] return output_size def get_output_size_module(input_size, stem): output_size = input_size for module in stem: if isinstance(module, nn.Conv2d): output_size = [ ( (output_size[i] + 2 * module.padding[i] - module.dilation[i] * (module.kernel_size[i] - 1) - 1) // module.stride[i] ) + 1 for i in range(2) ] return output_size class PatchEmbed(nn.Module): """Image to Patch Embedding.""" def __init__( self, img_size=224, stem_conv=False, stem_stride=1, patch_size=8, in_chans=3, hidden_dim=64, embed_dim=384 ): super().__init__() assert patch_size in [4, 8, 16] assert in_chans in [3, 6] self.with_persons_model = in_chans == 6 self.use_cross_attn = True if stem_conv: if not self.with_persons_model: self.conv = self.create_stem(stem_stride, in_chans, hidden_dim) else: self.conv = True # just to match interface # split self.conv1 = self.create_stem(stem_stride, 3, hidden_dim) self.conv2 = self.create_stem(stem_stride, 3, hidden_dim) else: self.conv = None if self.with_persons_model: self.proj1 = nn.Conv2d( hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride ) self.proj2 = nn.Conv2d( hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride ) stem_out_shape = get_output_size_module((img_size, img_size), self.conv1) self.proj_output_size = get_output_size(stem_out_shape, self.proj1) self.map = CrossBottleneckAttn(embed_dim, dim_out=embed_dim, num_heads=1, feat_size=self.proj_output_size) else: self.proj = nn.Conv2d( hidden_dim, embed_dim, kernel_size=patch_size // stem_stride, stride=patch_size // stem_stride ) self.patch_dim = img_size // patch_size self.num_patches = self.patch_dim**2 def create_stem(self, stem_stride, in_chans, hidden_dim): return nn.Sequential( nn.Conv2d(in_chans, hidden_dim, kernel_size=7, stride=stem_stride, padding=3, bias=False), # 112x112 nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112 nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=1, padding=1, bias=False), # 112x112 nn.BatchNorm2d(hidden_dim), nn.ReLU(inplace=True), ) def forward(self, x): if self.conv is not None: if self.with_persons_model: x1 = x[:, :3] x2 = x[:, 3:] x1 = self.conv1(x1) x1 = self.proj1(x1) x2 = self.conv2(x2) x2 = self.proj2(x2) x = torch.cat([x1, x2], dim=1) x = self.map(x) else: x = self.conv(x) x = self.proj(x) # B, C, H, W return x class MiVOLOModel(VOLO): """ Vision Outlooker, the main class of our model """ def __init__( self, layers, img_size=224, in_chans=3, num_classes=1000, global_pool="token", patch_size=8, stem_hidden_dim=64, embed_dims=None, num_heads=None, downsamples=(True, False, False, False), outlook_attention=(True, False, False, False), mlp_ratio=3.0, qkv_bias=False, drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, norm_layer=nn.LayerNorm, post_layers=("ca", "ca"), use_aux_head=True, use_mix_token=False, pooling_scale=2, ): super().__init__( layers, img_size, in_chans, num_classes, global_pool, patch_size, stem_hidden_dim, embed_dims, num_heads, downsamples, outlook_attention, mlp_ratio, qkv_bias, drop_rate, attn_drop_rate, drop_path_rate, norm_layer, post_layers, use_aux_head, use_mix_token, pooling_scale, ) im_size = img_size[0] if isinstance(img_size, tuple) else img_size self.patch_embed = PatchEmbed( img_size=im_size, stem_conv=True, stem_stride=2, patch_size=patch_size, in_chans=in_chans, hidden_dim=stem_hidden_dim, embed_dim=embed_dims[0], ) trunc_normal_(self.pos_embed, std=0.02) self.apply(self._init_weights) def forward_features(self, x): x = self.patch_embed(x).permute(0, 2, 3, 1) # B,C,H,W-> B,H,W,C # step2: tokens learning in the two stages x = self.forward_tokens(x) # step3: post network, apply class attention or not if self.post_network is not None: x = self.forward_cls(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False, targets=None, epoch=None): if self.global_pool == "avg": out = x.mean(dim=1) elif self.global_pool == "token": out = x[:, 0] else: out = x if pre_logits: return out features = out fds_enabled = hasattr(self, "_fds_forward") if fds_enabled: features = self._fds_forward(features, targets, epoch) out = self.head(features) if self.aux_head is not None: # generate classes in all feature tokens, see token labeling aux = self.aux_head(x[:, 1:]) out = out + 0.5 * aux.max(1)[0] return (out, features) if (fds_enabled and self.training) else out def forward(self, x, targets=None, epoch=None): """simplified forward (without mix token training)""" x = self.forward_features(x) x = self.forward_head(x, targets=targets, epoch=epoch) return x def _create_mivolo(variant, pretrained=False, **kwargs): if kwargs.get("features_only", None): raise RuntimeError("features_only not implemented for Vision Transformer models.") return build_model_with_cfg(MiVOLOModel, variant, pretrained, **kwargs) @register_model def mivolo_d1_224(pretrained=False, **kwargs): model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs) model = _create_mivolo("mivolo_d1_224", pretrained=pretrained, **model_args) return model @register_model def mivolo_d1_384(pretrained=False, **kwargs): model_args = dict(layers=(4, 4, 8, 2), embed_dims=(192, 384, 384, 384), num_heads=(6, 12, 12, 12), **kwargs) model = _create_mivolo("mivolo_d1_384", pretrained=pretrained, **model_args) return model @register_model def mivolo_d2_224(pretrained=False, **kwargs): model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) model = _create_mivolo("mivolo_d2_224", pretrained=pretrained, **model_args) return model @register_model def mivolo_d2_384(pretrained=False, **kwargs): model_args = dict(layers=(6, 4, 10, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) model = _create_mivolo("mivolo_d2_384", pretrained=pretrained, **model_args) return model @register_model def mivolo_d3_224(pretrained=False, **kwargs): model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) model = _create_mivolo("mivolo_d3_224", pretrained=pretrained, **model_args) return model @register_model def mivolo_d3_448(pretrained=False, **kwargs): model_args = dict(layers=(8, 8, 16, 4), embed_dims=(256, 512, 512, 512), num_heads=(8, 16, 16, 16), **kwargs) model = _create_mivolo("mivolo_d3_448", pretrained=pretrained, **model_args) return model @register_model def mivolo_d4_224(pretrained=False, **kwargs): model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs) model = _create_mivolo("mivolo_d4_224", pretrained=pretrained, **model_args) return model @register_model def mivolo_d4_448(pretrained=False, **kwargs): """VOLO-D4 model, Params: 193M""" model_args = dict(layers=(8, 8, 16, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), **kwargs) model = _create_mivolo("mivolo_d4_448", pretrained=pretrained, **model_args) return model @register_model def mivolo_d5_224(pretrained=False, **kwargs): model_args = dict( layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), mlp_ratio=4, stem_hidden_dim=128, **kwargs ) model = _create_mivolo("mivolo_d5_224", pretrained=pretrained, **model_args) return model @register_model def mivolo_d5_448(pretrained=False, **kwargs): model_args = dict( layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), mlp_ratio=4, stem_hidden_dim=128, **kwargs ) model = _create_mivolo("mivolo_d5_448", pretrained=pretrained, **model_args) return model @register_model def mivolo_d5_512(pretrained=False, **kwargs): model_args = dict( layers=(12, 12, 20, 4), embed_dims=(384, 768, 768, 768), num_heads=(12, 16, 16, 16), mlp_ratio=4, stem_hidden_dim=128, **kwargs ) model = _create_mivolo("mivolo_d5_512", pretrained=pretrained, **model_args) return model