--- base_model: huudan123/model_stage1_latest datasets: [] language: [] library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:183796 - loss:MultipleNegativesRankingLoss widget: - source_sentence: nếu thời_gian đến mà họ phải có một cuộc đấu_tranh johny shanon có_thể là một người ngạc_nhiên sentences: - johny nghĩ anh ta là người giỏi nhất trong thị_trấn - nếu một cuộc đấu_tranh đã xảy ra johny có_thể ngạc_nhiên đấy - tất_cả bằng_chứng về văn_hóa từ xã_hội của umbria đã bị mất - source_sentence: chèn jay leno đùa ở đây sentences: - mathews đã chỉ ra rằng sẽ không cần phải tuyển_dụng luật_sư địa_phương - đây là nơi mà một trò_đùa jay leno sẽ đi - jay leno không phải là một diễn_viên hài - source_sentence: đúng_vậy tất_cả là lỗi của họ sentences: - bạn bị giới_hạn bởi số_lượng bộ_nhớ bạn đã có - phải tất_cả đều là lỗi của họ - rõ_ràng là tất_cả những lỗi của công_nhân - source_sentence: 6 mặc_dù mỗi cơ_quan phát_triển và triển_khai các thỏa_thuận hiệu_quả phản_ánh các ưu_tiên tổ_chức cụ_thể cấu_trúc và nền văn_hóa các thỏa_thuận hiệu_quả đã gặp các đặc_điểm sau sentences: - các thỏa_thuận hiệu_quả đã được phát_hành từ mỗi đại_lý - kế_hoạch hiệu_quả loại_trừ bất_cứ điều gì để làm với các cấu_trúc - không có gì bên trong sảnh trên đồi cả - source_sentence: hay na uy hay gì đó sentences: - na uy hay cái gì đó khác - điều đó hoàn_toàn không đúng - na uy hoặc từ một trong những quốc_gia scandinavia model-index: - name: SentenceTransformer based on huudan123/model_stage1_latest results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts evaluator type: sts-evaluator metrics: - type: pearson_cosine value: 0.6158424066486425 name: Pearson Cosine - type: spearman_cosine value: 0.6200905366847259 name: Spearman Cosine - type: pearson_manhattan value: 0.6137620700797655 name: Pearson Manhattan - type: spearman_manhattan value: 0.6106931830117198 name: Spearman Manhattan - type: pearson_euclidean value: 0.613128823594717 name: Pearson Euclidean - type: spearman_euclidean value: 0.609682273061411 name: Spearman Euclidean - type: pearson_dot value: 0.5450997545843528 name: Pearson Dot - type: spearman_dot value: 0.5476322217461067 name: Spearman Dot - type: pearson_max value: 0.6158424066486425 name: Pearson Max - type: spearman_max value: 0.6200905366847259 name: Spearman Max --- # SentenceTransformer based on huudan123/model_stage1_latest This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [huudan123/model_stage1_latest](https://huggingface.co/huudan123/model_stage1_latest). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [huudan123/model_stage1_latest](https://huggingface.co/huudan123/model_stage1_latest) - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("huudan123/model_stage2_latest") # Run inference sentences = [ 'hay na uy hay gì đó', 'na uy hoặc từ một trong những quốc_gia scandinavia', 'na uy hay cái gì đó khác', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-evaluator` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:-------------------|:-----------| | pearson_cosine | 0.6158 | | spearman_cosine | 0.6201 | | pearson_manhattan | 0.6138 | | spearman_manhattan | 0.6107 | | pearson_euclidean | 0.6131 | | spearman_euclidean | 0.6097 | | pearson_dot | 0.5451 | | spearman_dot | 0.5476 | | pearson_max | 0.6158 | | **spearman_max** | **0.6201** | ## Training Details ### Training Hyperparameters #### Non-Default Hyperparameters - `overwrite_output_dir`: True - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `num_train_epochs`: 5 - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `gradient_checkpointing`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: True - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: True - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | loss | sts-evaluator_spearman_max | |:----------:|:-------:|:-------------:|:----------:|:--------------------------:| | 0 | 0 | - | - | 0.5824 | | 0.1741 | 250 | 5.8989 | - | - | | **0.3482** | **500** | **2.3493** | **2.3052** | **0.6849** | | 0.5223 | 750 | 2.2177 | - | - | | 0.6964 | 1000 | 2.0936 | 2.1683 | 0.6644 | | 0.8705 | 1250 | 2.033 | - | - | | 1.0446 | 1500 | 1.941 | 2.0962 | 0.6201 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.44.0 - PyTorch: 2.4.0+cu121 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```