--- license: llama2 base_model: codellama/CodeLlama-7b-Instruct-hf tags: - generated_from_trainer model-index: - name: codellama-7b-sft-lora-func-names results: [] --- # codellama-7b-sft-lora-func-names This model is a fine-tuned version of [codellama/CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7084 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - training_steps: 900 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7541 | 0.01 | 180 | 0.7222 | | 0.7126 | 0.01 | 360 | 0.7118 | | 0.7342 | 0.02 | 540 | 0.7100 | | 0.7216 | 0.03 | 720 | 0.7083 | | 0.7171 | 0.04 | 900 | 0.7084 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1