# Deep learning import torch import torch.nn as nn from torch import optim from trainers import TrainerClassifierMultitask from utils import get_optim_groups # Data import pandas as pd import numpy as np # Standard library import args import os def main(config): device = 'cuda' if torch.cuda.is_available() else 'cpu' # Define Target and Causal Features if config.dataset_name == 'tox21': targets = ['NR-AR', 'NR-AR-LBD', 'NR-AhR', 'NR-Aromatase', 'NR-ER', 'NR-ER-LBD', 'NR-PPAR-gamma', 'SR-ARE', 'SR-ATAD5', 'SR-HSE', 'SR-MMP', 'SR-p53'] elif config.dataset_name == 'clintox': targets = ['FDA_APPROVED', 'CT_TOX'] elif config.dataset_name == 'sider': targets = [ 'Hepatobiliary disorders', 'Metabolism and nutrition disorders', 'Product issues', 'Eye disorders', 'Investigations', 'Musculoskeletal and connective tissue disorders', 'Gastrointestinal disorders', 'Social circumstances', 'Immune system disorders', 'Reproductive system and breast disorders', 'Neoplasms benign, malignant and unspecified (incl cysts and polyps)', 'General disorders and administration site conditions', 'Endocrine disorders', 'Surgical and medical procedures', 'Vascular disorders', 'Blood and lymphatic system disorders', 'Skin and subcutaneous tissue disorders', 'Congenital, familial and genetic disorders', 'Infections and infestations', 'Respiratory, thoracic and mediastinal disorders', 'Psychiatric disorders', 'Renal and urinary disorders', 'Pregnancy, puerperium and perinatal conditions', 'Ear and labyrinth disorders', 'Cardiac disorders', 'Nervous system disorders', 'Injury, poisoning and procedural complications' ] elif config.dataset_name == 'muv': targets = [ 'MUV-466', 'MUV-548', 'MUV-600', 'MUV-644', 'MUV-652', 'MUV-689', 'MUV-692', 'MUV-712', 'MUV-713', 'MUV-733', 'MUV-737', 'MUV-810', 'MUV-832', 'MUV-846', 'MUV-852', 'MUV-858', 'MUV-859' ] config.n_output = len(targets) # load dataset df_train = pd.read_csv(f"{config.data_root}/train.csv") df_valid = pd.read_csv(f"{config.data_root}/valid.csv") df_test = pd.read_csv(f"{config.data_root}/test.csv") # load model if config.smi_ted_version == 'v1': from smi_ted_light.load import load_smi_ted elif config.smi_ted_version == 'v2': from smi_ted_large.load import load_smi_ted model = load_smi_ted(folder=config.model_path, ckpt_filename=config.ckpt_filename, n_output=len(targets), eval=False) model.net.apply(model._init_weights) print(model.net) lr = config.lr_start*config.lr_multiplier optim_groups = get_optim_groups(model, keep_decoder=bool(config.train_decoder)) if config.loss_fn == 'bceloss': loss_function = nn.BCELoss() # init trainer trainer = TrainerClassifierMultitask( raw_data=(df_train, df_valid, df_test), dataset_name=config.dataset_name, target=targets, batch_size=config.n_batch, hparams=config, target_metric=config.target_metric, seed=config.start_seed, smi_ted_version=config.smi_ted_version, checkpoints_folder=config.checkpoints_folder, restart_filename=config.restart_filename, device=device, save_every_epoch=bool(config.save_every_epoch), save_ckpt=bool(config.save_ckpt) ) trainer.compile( model=model, optimizer=optim.AdamW(optim_groups, lr=lr, betas=(0.9, 0.99)), loss_fn=loss_function ) trainer.fit(max_epochs=config.max_epochs) trainer.evaluate() if __name__ == '__main__': parser = args.get_parser() config = parser.parse_args() main(config)