--- base_model: - ielabgroup/bert-base-uncased-fineweb100bt-smae datasets: - sentence-transformers/all-nli language: - en library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:557850 - loss:StarbucksLoss widget: - source_sentence: A dog is in the water. sentences: - The woman is wearing green. - The dog is rolling around in the grass. - A brown dog swims through water outdoors with a tennis ball in its mouth. - source_sentence: A dog is swimming. sentences: - a black dog swimming in the water with a tennis ball in his mouth - A dog with yellow fur swims, neck deep, in water. - A brown dog running through a large orange tube. - source_sentence: A dog is swimming. sentences: - A dog with golden hair swims through water. - A golden haired dog is lying in a boat that is traveling on a lake. - A dog with golden hair swims through water. - source_sentence: A dog is swimming. sentences: - A tan dog splashes as he swims through the water. - A man and young boy asleep in a chair. - A dog in a harness chasing a red ball. - source_sentence: A dog is in the water. sentences: - A big brown dog jumps into a swimming pool on the backyard. - Wet brown dog swims towards camera. - The dog is rolling around in the grass. model-index: - name: >- SentenceTransformer based on ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: sts test type: sts-test metrics: - type: pearson_cosine value: 0.8170317205826663 name: Pearson Cosine - type: spearman_cosine value: 0.827406310000667 name: Spearman Cosine - type: pearson_manhattan value: 0.8085162876731988 name: Pearson Manhattan - type: spearman_manhattan value: 0.8050045835065848 name: Spearman Manhattan - type: pearson_euclidean value: 0.8122787407180172 name: Pearson Euclidean - type: spearman_euclidean value: 0.809299222491485 name: Spearman Euclidean - type: pearson_dot value: 0.7657571947414553 name: Pearson Dot - type: spearman_dot value: 0.7564706925314776 name: Spearman Dot - type: pearson_max value: 0.8170317205826663 name: Pearson Max - type: spearman_max value: 0.827406310000667 name: Spearman Max --- # SentenceTransformer based on ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae](https://huggingface.co/ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae](https://huggingface.co/ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) - **Language:** en ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("ielabgroup/Starbucks_STS") # Run inference sentences = [ 'A dog is in the water.', 'Wet brown dog swims towards camera.', 'The dog is rolling around in the grass.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `sts-test` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.817 | | **spearman_cosine** | **0.8274** | | pearson_manhattan | 0.8085 | | spearman_manhattan | 0.805 | | pearson_euclidean | 0.8123 | | spearman_euclidean | 0.8093 | | pearson_dot | 0.7658 | | spearman_dot | 0.7565 | | pearson_max | 0.817 | | spearman_max | 0.8274 | ## Training Details ### Training Dataset #### all-nli * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) * Size: 557,850 training samples * Columns: anchor, positive, and negative * Approximate statistics based on the first 1000 samples: | | anchor | positive | negative | |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------| | type | string | string | string | | details | | | | * Samples: | anchor | positive | negative | |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------| | A person on a horse jumps over a broken down airplane. | A person is outdoors, on a horse. | A person is at a diner, ordering an omelette. | | Children smiling and waving at camera | There are children present | The kids are frowning | | A boy is jumping on skateboard in the middle of a red bridge. | The boy does a skateboarding trick. | The boy skates down the sidewalk. | * Loss: starbucks_loss.StarbucksLoss with these parameters: ```json { "loss": "MatryoshkaLoss", "n_selections_per_step": -1, "last_layer_weight": 1.0, "prior_layers_weight": 1.0, "kl_div_weight": 1.0, "kl_temperature": 0.3, "matryoshka_layers": [ 1, 3, 5, 7, 9, 11 ], "matryoshka_dims": [ 32, 64, 128, 256, 512, 768 ] } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `num_train_epochs`: 1 - `warmup_ratio`: 0.1 - `fp16`: True - `gradient_checkpointing`: True #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: True - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | sts-test_spearman_cosine | |:------:|:----:|:-------------:|:------------------------:| | 0.0229 | 100 | 16.7727 | - | | 0.0459 | 200 | 9.653 | - | | 0.0688 | 300 | 8.3187 | - | | 0.0918 | 400 | 7.748 | - | | 0.1147 | 500 | 7.2587 | - | | 0.1376 | 600 | 6.734 | - | | 0.1606 | 700 | 6.4463 | - | | 0.1835 | 800 | 6.299 | - | | 0.2065 | 900 | 5.9946 | - | | 0.2294 | 1000 | 5.9348 | - | | 0.2524 | 1100 | 5.7723 | - | | 0.2753 | 1200 | 5.5822 | - | | 0.2982 | 1300 | 5.4233 | - | | 0.3212 | 1400 | 5.3427 | - | | 0.3441 | 1500 | 5.3132 | - | | 0.3671 | 1600 | 5.3149 | - | | 0.3900 | 1700 | 5.3007 | - | | 0.4129 | 1800 | 4.9539 | - | | 0.4359 | 1900 | 4.9308 | - | | 0.4588 | 2000 | 4.8171 | - | | 0.4818 | 2100 | 5.0181 | - | | 0.5047 | 2200 | 4.9631 | - | | 0.5276 | 2300 | 4.8125 | - | | 0.5506 | 2400 | 4.7133 | - | | 0.5735 | 2500 | 4.5809 | - | | 0.5965 | 2600 | 4.6093 | - | | 0.6194 | 2700 | 4.6723 | - | | 0.6423 | 2800 | 4.5526 | - | | 0.6653 | 2900 | 4.4967 | - | | 0.6882 | 3000 | 4.4178 | - | | 0.7112 | 3100 | 4.4333 | - | | 0.7341 | 3200 | 4.3289 | - | | 0.7571 | 3300 | 4.5199 | - | | 0.7800 | 3400 | 4.3389 | - | | 0.8029 | 3500 | 4.3394 | - | | 0.8259 | 3600 | 4.2423 | - | | 0.8488 | 3700 | 4.3219 | - | | 0.8718 | 3800 | 4.3297 | - | | 0.8947 | 3900 | 4.3132 | - | | 0.9176 | 4000 | 4.2616 | - | | 0.9406 | 4100 | 4.2233 | - | | 0.9635 | 4200 | 4.1912 | - | | 0.9865 | 4300 | 4.1838 | - | | 1.0 | 4359 | - | 0.8274 | ### Framework Versions - Python: 3.10.13 - Sentence Transformers: 3.1.1 - Transformers: 4.44.2 - PyTorch: 2.4.1+cu121 - Accelerate: 0.33.0 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```