---
base_model:
- ielabgroup/bert-base-uncased-fineweb100bt-smae
datasets:
- sentence-transformers/all-nli
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:557850
- loss:StarbucksLoss
widget:
- source_sentence: A dog is in the water.
sentences:
- The woman is wearing green.
- The dog is rolling around in the grass.
- A brown dog swims through water outdoors with a tennis ball in its mouth.
- source_sentence: A dog is swimming.
sentences:
- a black dog swimming in the water with a tennis ball in his mouth
- A dog with yellow fur swims, neck deep, in water.
- A brown dog running through a large orange tube.
- source_sentence: A dog is swimming.
sentences:
- A dog with golden hair swims through water.
- A golden haired dog is lying in a boat that is traveling on a lake.
- A dog with golden hair swims through water.
- source_sentence: A dog is swimming.
sentences:
- A tan dog splashes as he swims through the water.
- A man and young boy asleep in a chair.
- A dog in a harness chasing a red ball.
- source_sentence: A dog is in the water.
sentences:
- A big brown dog jumps into a swimming pool on the backyard.
- Wet brown dog swims towards camera.
- The dog is rolling around in the grass.
model-index:
- name: >-
SentenceTransformer based on
ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8170317205826663
name: Pearson Cosine
- type: spearman_cosine
value: 0.827406310000667
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8085162876731988
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8050045835065848
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8122787407180172
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.809299222491485
name: Spearman Euclidean
- type: pearson_dot
value: 0.7657571947414553
name: Pearson Dot
- type: spearman_dot
value: 0.7564706925314776
name: Spearman Dot
- type: pearson_max
value: 0.8170317205826663
name: Pearson Max
- type: spearman_max
value: 0.827406310000667
name: Spearman Max
---
# SentenceTransformer based on ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae](https://huggingface.co/ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae](https://huggingface.co/ielabgroup/bert-base-uncased-fineweb100bt-matryoshka-mae)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ielabgroup/Starbucks_STS")
# Run inference
sentences = [
'A dog is in the water.',
'Wet brown dog swims towards camera.',
'The dog is rolling around in the grass.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-test`
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.817 |
| **spearman_cosine** | **0.8274** |
| pearson_manhattan | 0.8085 |
| spearman_manhattan | 0.805 |
| pearson_euclidean | 0.8123 |
| spearman_euclidean | 0.8093 |
| pearson_dot | 0.7658 |
| spearman_dot | 0.7565 |
| pearson_max | 0.817 |
| spearman_max | 0.8274 |
## Training Details
### Training Dataset
#### all-nli
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 557,850 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details |
A person on a horse jumps over a broken down airplane.
| A person is outdoors, on a horse.
| A person is at a diner, ordering an omelette.
|
| Children smiling and waving at camera
| There are children present
| The kids are frowning
|
| A boy is jumping on skateboard in the middle of a red bridge.
| The boy does a skateboarding trick.
| The boy skates down the sidewalk.
|
* Loss: starbucks_loss.StarbucksLoss
with these parameters:
```json
{
"loss": "MatryoshkaLoss",
"n_selections_per_step": -1,
"last_layer_weight": 1.0,
"prior_layers_weight": 1.0,
"kl_div_weight": 1.0,
"kl_temperature": 0.3,
"matryoshka_layers": [
1,
3,
5,
7,
9,
11
],
"matryoshka_dims": [
32,
64,
128,
256,
512,
768
]
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 128
- `per_device_eval_batch_size`: 128
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `gradient_checkpointing`: True
#### All Hyperparameters