--- library_name: transformers language: - ps license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Small - Hanif Rahman results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: ps split: test args: 'config: ps, split: test' metrics: - name: Wer type: wer value: 47.980613893376415 --- # Whisper Small - Hanif Rahman This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8094 - Wer Ortho: 51.6855 - Wer: 47.9806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:| | 0.6754 | 0.9346 | 100 | 0.6689 | 62.1021 | 58.4888 | | 0.4477 | 1.8692 | 200 | 0.6215 | 57.3134 | 53.5101 | | 0.2243 | 2.8037 | 300 | 0.6222 | 55.8883 | 52.0928 | | 0.0949 | 3.7383 | 400 | 0.6822 | 54.6007 | 49.6989 | | 0.0448 | 4.6729 | 500 | 0.7240 | 53.5301 | 49.4346 | | 0.0201 | 5.6075 | 600 | 0.7355 | 52.7344 | 48.9646 | | 0.0124 | 6.5421 | 700 | 0.7615 | 52.3944 | 48.6929 | | 0.0035 | 7.4766 | 800 | 0.7868 | 51.0778 | 47.2243 | | 0.002 | 8.4112 | 900 | 0.8025 | 51.6276 | 47.6869 | | 0.0011 | 9.3458 | 1000 | 0.8094 | 51.6855 | 47.9806 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3