from transformers import pipeline, M2M100ForConditionalGeneration, M2M100Tokenizer,QuantoConfig from typing import Dict, List, Any class EndpointHandler(): def __init__(self, path=""): # load the optimized model model = M2M100ForConditionalGeneration.from_pretrained(path) tokenizer = M2M100Tokenizer.from_pretrained(path) # create inference pipeline self.pipeline = pipeline("translation", model=model, tokenizer=tokenizer) def __call__(self, data: Any) -> List[List[Dict[str, float]]]: """ Args: data (:obj:): includes the input data and the parameters for the inference. Return: A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : - "label": A string representing what the label/class is. There can be multiple labels. - "score": A score between 0 and 1 describing how confident the model is for this label/class. """ text = data.get("text", data) lang = data.get("langId",data) encoded = tokenizer(text, return_tensors="pt") generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.get_lang_id(lang)) result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0] return {'transdlated':result}