---
license: mit
base_model: croissantllm/CroissantCool-v0.2
tags:
- generated_from_trainer
model-index:
- name: gpfs/workdir/fayssema/models/out_newtok_dataset1
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: croissantllm/CroissantCool-v0.2
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizerFast
is_llama_derived_model: true
special_tokens:
bos_token: ""
eos_token: ""
unk_token: ""
tokens:
- "<|im_start|>"
- "<|im_end|>"
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: manu/dataset_1
split: train
type: sharegpt
chat_template: "chatml"
default_system_message: null
dataset_prepared_path: new_pii_2
val_set_size: 0.05
output_dir: /gpfs/workdir/fayssema/models/out_newtok_dataset1
sequence_len: 2048
sample_packing: false
pad_to_sequence_len: false
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 16
num_epochs: 3
# optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: false
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
warmup_steps: 100
evals_per_epoch: 4
eval_table_size:
saves_per_epoch: 1
debug:
deepspeed: #deepspeed_configs/zero2.json # multi-gpu only
weight_decay: 0.05
fsdp:
fsdp_config:
```
# gpfs/workdir/fayssema/models/out_newtok_dataset1
This model is a fine-tuned version of [croissantllm/CroissantCool-v0.2](https://huggingface.co/croissantllm/CroissantCool-v0.2) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0087
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.0845 | 0.0 | 1 | 0.8684 |
| 0.1841 | 0.25 | 73 | 0.0205 |
| 0.2394 | 0.51 | 146 | 0.0134 |
| 0.1685 | 0.76 | 219 | 0.0128 |
| 0.1385 | 1.01 | 292 | 0.0209 |
| 0.1561 | 1.26 | 365 | 0.0128 |
| 0.1352 | 1.52 | 438 | 0.0090 |
| 0.162 | 1.77 | 511 | 0.0094 |
| 0.0661 | 2.02 | 584 | 0.0085 |
| 0.1344 | 2.27 | 657 | 0.0089 |
| 0.0718 | 2.53 | 730 | 0.0088 |
| 0.0942 | 2.78 | 803 | 0.0087 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0