--- library_name: transformers language: - ko license: mit base_model: imTak/whisper_large_v3_turbo_Korean2 tags: - generated_from_trainer datasets: - imTak/korean-speak-Develop metrics: - wer model-index: - name: Whisper large v3 turbo Korean-Develop results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Develop type: imTak/korean-speak-Develop args: 'config: ko, split: test' metrics: - name: Wer type: wer value: 16.43703941044537 --- # Whisper large v3 turbo Korean-Develop This model is a fine-tuned version of [imTak/whisper_large_v3_ko_ft_ft](https://huggingface.co/imTak/whisper_large_v3_ko_ft_ft) on the Develop dataset. It achieves the following results on the evaluation set: - Loss: 0.3054 - Wer: 16.4370 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.2119 | 1.9455 | 500 | 0.2721 | 22.6690 | | 0.0714 | 3.8911 | 1000 | 0.2542 | 19.9135 | | 0.0145 | 5.8366 | 1500 | 0.2417 | 18.5037 | | 0.0018 | 7.7821 | 2000 | 0.2410 | 16.6453 | | 0.0263 | 9.7276 | 2500 | 0.2818 | 19.4169 | | 0.0179 | 11.6732 | 3000 | 0.2806 | 18.5838 | | 0.008 | 13.6187 | 3500 | 0.2977 | 18.1032 | | 0.0072 | 15.5642 | 4000 | 0.2920 | 17.8949 | | 0.0011 | 17.5097 | 4500 | 0.2875 | 16.8376 | | 0.0024 | 19.4553 | 5000 | 0.3072 | 17.8629 | | 0.0009 | 21.4008 | 5500 | 0.2943 | 16.8536 | | 0.0002 | 23.3463 | 6000 | 0.3041 | 16.8055 | | 0.0001 | 25.2918 | 6500 | 0.2993 | 16.6773 | | 0.0001 | 27.2374 | 7000 | 0.3016 | 16.4851 | | 0.0001 | 29.1829 | 7500 | 0.3043 | 16.4050 | | 0.0001 | 31.1284 | 8000 | 0.3054 | 16.4370 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3