--- library_name: transformers language: - ko license: mit base_model: imTak/whisper_large_v3_turbo_Korean2 tags: - generated_from_trainer datasets: - imTak/Economy metrics: - wer model-index: - name: Whisper large v3 turbo Korean-Economy results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Economy type: imTak/Economy args: 'config: ko, split: test' metrics: - name: Wer type: wer value: 44.99209128911987 --- # Whisper large v3 turbo Korean-Economy This model is a fine-tuned version of [imTak/whisper_large_v3_ko_ft_ft](https://huggingface.co/imTak/whisper_large_v3_ko_ft_ft) on the Economy dataset. It achieves the following results on the evaluation set: - Loss: 0.7148 - Wer: 44.9921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.8263 | 0.4630 | 1000 | 0.8210 | 49.0241 | | 0.7497 | 0.9259 | 2000 | 0.7351 | 47.6006 | | 0.4979 | 1.3889 | 3000 | 0.6992 | 45.6375 | | 0.5197 | 1.8519 | 4000 | 0.6659 | 44.3410 | | 0.4264 | 2.3148 | 5000 | 0.7168 | 46.6459 | | 0.3911 | 2.7778 | 6000 | 0.6988 | 45.0726 | | 0.2565 | 3.2407 | 7000 | 0.7203 | 44.8000 | | 0.2462 | 3.7037 | 8000 | 0.7148 | 44.9921 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3