--- license: llama2 library_name: peft tags: - unsloth - generated_from_trainer base_model: meta-llama/Llama-2-13b-hf model-index: - name: llama_2_13b_MetaMathQA_40K_ortho results: [] --- # llama_2_13b_MetaMathQA_40K_ortho This model is a fine-tuned version of [meta-llama/Llama-2-13b-hf](https://huggingface.co/meta-llama/Llama-2-13b-hf) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.02 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.7973 | 0.0211 | 13 | 0.6231 | | 0.587 | 0.0421 | 26 | 0.5915 | | 0.5618 | 0.0632 | 39 | 0.5752 | | 0.5435 | 0.0842 | 52 | 0.5648 | | 0.5329 | 0.1053 | 65 | 0.5548 | | 0.5189 | 0.1264 | 78 | 0.5486 | | 0.5265 | 0.1474 | 91 | 0.5423 | | 0.507 | 0.1685 | 104 | 0.5367 | | 0.5282 | 0.1896 | 117 | 0.5328 | | 0.517 | 0.2106 | 130 | 0.5292 | | 0.4969 | 0.2317 | 143 | 0.5249 | | 0.481 | 0.2527 | 156 | 0.5207 | | 0.4847 | 0.2738 | 169 | 0.5166 | | 0.4876 | 0.2949 | 182 | 0.5137 | | 0.4776 | 0.3159 | 195 | 0.5105 | | 0.4857 | 0.3370 | 208 | 0.5071 | | 0.4888 | 0.3580 | 221 | 0.5037 | | 0.4833 | 0.3791 | 234 | 0.5016 | | 0.4695 | 0.4002 | 247 | 0.4988 | | 0.476 | 0.4212 | 260 | 0.4948 | | 0.4873 | 0.4423 | 273 | 0.4931 | | 0.4709 | 0.4633 | 286 | 0.4913 | | 0.4765 | 0.4844 | 299 | 0.4892 | | 0.4767 | 0.5055 | 312 | 0.4871 | | 0.4599 | 0.5265 | 325 | 0.4856 | | 0.4687 | 0.5476 | 338 | 0.4838 | | 0.4525 | 0.5687 | 351 | 0.4826 | | 0.4627 | 0.5897 | 364 | 0.4797 | | 0.4535 | 0.6108 | 377 | 0.4781 | | 0.4574 | 0.6318 | 390 | 0.4766 | | 0.4597 | 0.6529 | 403 | 0.4758 | | 0.4651 | 0.6740 | 416 | 0.4746 | | 0.456 | 0.6950 | 429 | 0.4732 | | 0.4557 | 0.7161 | 442 | 0.4720 | | 0.4505 | 0.7371 | 455 | 0.4708 | | 0.4446 | 0.7582 | 468 | 0.4699 | | 0.4574 | 0.7793 | 481 | 0.4688 | | 0.4459 | 0.8003 | 494 | 0.4678 | | 0.4394 | 0.8214 | 507 | 0.4674 | | 0.4587 | 0.8424 | 520 | 0.4672 | | 0.4536 | 0.8635 | 533 | 0.4667 | | 0.4488 | 0.8846 | 546 | 0.4666 | | 0.4504 | 0.9056 | 559 | 0.4662 | | 0.4428 | 0.9267 | 572 | 0.4661 | | 0.4505 | 0.9478 | 585 | 0.4660 | | 0.444 | 0.9688 | 598 | 0.4659 | | 0.4496 | 0.9899 | 611 | 0.4660 | ### Framework versions - PEFT 0.7.1 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1