--- base_model: Qwen/Qwen-14B tags: - generated_from_trainer datasets: - cnn_dailymail model-index: - name: final_cnn_dailymail results: [] --- # final_cnn_dailymail This model is a fine-tuned version of [Qwen/Qwen-14B](https://huggingface.co/Qwen/Qwen-14B) on the cnn_dailymail dataset. It achieves the following results on the evaluation set: - Loss: 2.2127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.01 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9757 | 0.02 | 100 | 1.9261 | | 1.9258 | 0.04 | 200 | 1.8833 | | 1.8977 | 0.06 | 300 | 1.8657 | | 1.8903 | 0.08 | 400 | 1.8630 | | 1.8858 | 0.1 | 500 | 1.8638 | | 1.89 | 0.12 | 600 | 1.8636 | | 1.873 | 0.14 | 700 | 1.8637 | | 1.8908 | 0.16 | 800 | 1.8637 | | 1.8791 | 0.18 | 900 | 1.8626 | | 1.8851 | 0.2 | 1000 | 1.8634 | | 1.89 | 0.22 | 1100 | 1.8651 | | 1.8889 | 0.24 | 1200 | 1.8681 | | 1.8896 | 0.26 | 1300 | 1.8708 | | 1.8817 | 0.28 | 1400 | 1.8739 | | 1.9003 | 0.3 | 1500 | 1.8791 | | 1.9005 | 0.32 | 1600 | 1.8825 | | 1.9024 | 0.34 | 1700 | 1.8864 | | 1.9204 | 0.36 | 1800 | 1.8929 | | 1.9182 | 0.38 | 1900 | 1.8955 | | 1.9289 | 0.4 | 2000 | 1.9035 | | 1.9348 | 0.42 | 2100 | 1.9157 | | 1.9453 | 0.44 | 2200 | 1.9277 | | 1.9689 | 0.46 | 2300 | 1.9457 | | 1.9829 | 0.48 | 2400 | 1.9596 | | 1.9874 | 0.5 | 2500 | 1.9803 | | 2.0148 | 0.52 | 2600 | 1.9991 | | 2.0391 | 0.54 | 2700 | 2.0249 | | 2.0619 | 0.56 | 2800 | 2.0477 | | 2.0736 | 0.58 | 2900 | 2.0678 | | 2.0957 | 0.6 | 3000 | 2.0825 | | 2.1223 | 0.62 | 3100 | 2.1097 | | 2.1357 | 0.64 | 3200 | 2.1164 | | 2.1759 | 0.66 | 3300 | 2.1524 | | 2.168 | 0.68 | 3400 | 2.1650 | | 2.1842 | 0.7 | 3500 | 2.1637 | | 2.1956 | 0.72 | 3600 | 2.1775 | | 2.2131 | 0.74 | 3700 | 2.1888 | | 2.198 | 0.76 | 3800 | 2.1953 | | 2.2231 | 0.78 | 3900 | 2.1994 | | 2.2292 | 0.8 | 4000 | 2.2080 | | 2.2343 | 0.82 | 4100 | 2.2093 | | 2.2261 | 0.84 | 4200 | 2.2009 | | 2.2104 | 0.86 | 4300 | 2.2015 | | 2.2255 | 0.88 | 4400 | 2.2077 | | 2.2299 | 0.9 | 4500 | 2.2099 | | 2.2253 | 0.92 | 4600 | 2.2100 | | 2.2239 | 0.94 | 4700 | 2.2116 | | 2.2322 | 0.96 | 4800 | 2.2122 | | 2.2457 | 0.98 | 4900 | 2.2127 | | 2.2325 | 1.0 | 5000 | 2.2127 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.1.0 - Datasets 2.14.7 - Tokenizers 0.13.3