from transformers import Pipeline import nltk import torch nltk.download("averaged_perceptron_tagger") nltk.download("averaged_perceptron_tagger_eng") import requests def get_wikipedia_page_props(input_str: str): """ Retrieves the QID for a given Wikipedia page name from the specified language Wikipedia. If the request fails, it falls back to using the OpenRefine Wikidata API. Args: input_str (str): The input string in the format "page_name >> language". Returns: str: The QID or "NIL" if the QID is not found. """ try: # Preprocess the input string page_name, language = input_str.split(" >> ") page_name = page_name.strip() language = language.strip() except ValueError: return "Invalid input format. Use 'page_name >> language'." wikipedia_url = f"https://{language}.wikipedia.org/w/api.php" wikipedia_params = { "action": "query", "prop": "pageprops", "format": "json", "titles": page_name, } qid = "NIL" try: # Attempt to fetch from Wikipedia API response = requests.get(wikipedia_url, params=wikipedia_params) response.raise_for_status() data = response.json() if "pages" in data["query"]: page_id = list(data["query"]["pages"].keys())[0] if "pageprops" in data["query"]["pages"][page_id]: page_props = data["query"]["pages"][page_id]["pageprops"] if "wikibase_item" in page_props: return page_props["wikibase_item"] else: return qid else: return qid except Exception as e: return qid def get_wikipedia_title(qid, language="en"): url = f"https://www.wikidata.org/w/api.php" params = { "action": "wbgetentities", "format": "json", "ids": qid, "props": "sitelinks/urls", "sitefilter": f"{language}wiki", } response = requests.get(url, params=params) data = response.json() try: title = data["entities"][qid]["sitelinks"][f"{language}wiki"]["title"] url = data["entities"][qid]["sitelinks"][f"{language}wiki"]["url"] return title, url except KeyError: return "NIL", "None" class NelPipeline(Pipeline): def _sanitize_parameters(self, **kwargs): preprocess_kwargs = {} if "text" in kwargs: preprocess_kwargs["text"] = kwargs["text"] return preprocess_kwargs, {}, {} def preprocess(self, text, **kwargs): outputs = self.model.generate( **self.tokenizer([text], return_tensors="pt"), num_beams=5, num_return_sequences=5, max_new_tokens=30, ) # print(outputs) # token_ids, scores = outputs.sequences, outputs.sequences_scores # scores_tensor = scores.clone().detach() # probabilities = torch.exp(scores_tensor) # percentages = (probabilities * 100.0).cpu().numpy().tolist() wikipedia_predictions = self.tokenizer.batch_decode( outputs, skip_special_tokens=True ) # print(f"Decoded: {wikipedia_predictons}")np.round(percentages[i], 2) return wikipedia_predictions, [0, 0, 0, 0, 0] def _forward(self, inputs): return inputs def postprocess(self, outputs, **kwargs): """ Postprocess the outputs of the model :param outputs: :param kwargs: :return: """ wikipedia_predictions, percentages = outputs results = [] for idx, wikipedia_name in enumerate(outputs): # Get QID qid = get_wikipedia_page_props(wikipedia_name) # print(f"{wikipedia_name} -- QID: {qid}") # Get Wikipedia title and URL title, url = get_wikipedia_title(qid) results.append( {"title": title, "qid": qid, "url": url, "score": percentages[idx]} ) return results