--- language: - hu license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - hu - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Hungarian results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: hu metrics: - name: Test WER type: wer value: 31.099 - name: Test CER type: cer value: 6.737 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Dev Data type: speech-recognition-community-v2/dev_data args: hu metrics: - name: Test WER type: wer value: 45.469 - name: Test CER type: cer value: 15.727 - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Robust Speech Event - Test Data type: speech-recognition-community-v2/eval_data args: hu metrics: - name: Test WER type: wer value: 48.2 --- # wav2vec2-large-xls-r-300m-hungarian This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - HU dataset. It achieves the following results on the evaluation set: - Loss: 0.2562 - Wer: 0.3112 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 2.3964 | 3.52 | 1000 | 1.2251 | 0.8781 | | 1.3176 | 7.04 | 2000 | 0.3872 | 0.4462 | | 1.1999 | 10.56 | 3000 | 0.3244 | 0.3922 | | 1.1633 | 14.08 | 4000 | 0.3014 | 0.3704 | | 1.1132 | 17.61 | 5000 | 0.2913 | 0.3623 | | 1.0888 | 21.13 | 6000 | 0.2864 | 0.3498 | | 1.0487 | 24.65 | 7000 | 0.2821 | 0.3435 | | 1.0431 | 28.17 | 8000 | 0.2739 | 0.3308 | | 0.9896 | 31.69 | 9000 | 0.2629 | 0.3243 | | 0.9839 | 35.21 | 10000 | 0.2806 | 0.3308 | | 0.9586 | 38.73 | 11000 | 0.2650 | 0.3235 | | 0.9501 | 42.25 | 12000 | 0.2585 | 0.3173 | | 0.938 | 45.77 | 13000 | 0.2561 | 0.3117 | | 0.921 | 49.3 | 14000 | 0.2559 | 0.3115 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0