--- language: - kmr license: apache-2.0 tags: - automatic-speech-recognition - generated_from_trainer - hf-asr-leaderboard - kmr - model_for_talk - mozilla-foundation/common_voice_7_0 - robust-speech-event datasets: - mozilla-foundation/common_voice_7_0 model-index: - name: XLS-R-300M - Kurmanji Kurdish results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 7 type: mozilla-foundation/common_voice_7_0 args: kmr metrics: - name: Test WER type: wer value: 102.308 - name: Test CER type: cer value: 538.748 --- # wav2vec2-large-xls-r-300m-kurdish This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - KMR dataset. It achieves the following results on the evaluation set: - Loss: 0.2548 - Wer: 0.2688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2000 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 1.3161 | 12.27 | 2000 | 0.4199 | 0.4797 | | 1.0643 | 24.54 | 4000 | 0.2982 | 0.3721 | | 0.9718 | 36.81 | 6000 | 0.2762 | 0.3333 | | 0.8772 | 49.08 | 8000 | 0.2586 | 0.3051 | | 0.8236 | 61.35 | 10000 | 0.2575 | 0.2865 | | 0.7745 | 73.62 | 12000 | 0.2603 | 0.2816 | | 0.7297 | 85.89 | 14000 | 0.2539 | 0.2727 | | 0.7079 | 98.16 | 16000 | 0.2554 | 0.2681 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0