{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "ZG_P29nKcSeI"
},
"source": [
"# HuggingFace challenge - Debugger notebook\n",
"Run this notebook to verify your libraries versions, check GPU config and run a quick training"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "YacvHugMc1Ka"
},
"outputs": [],
"source": [
"# %%capture\n",
"# !pip install https://github.com/kpu/kenlm/archive/master.zip pyctcdecode\n",
"# !pip install datasets==1.18.1\n",
"# !pip install git+https://github.com/huggingface/transformers.git\n",
"# !pip install huggingface_hub==0.1\n",
"# !pip install torchaudio==0.10.0+cu113 -f https://download.pytorch.org/whl/cu113/torch_stable.html\n",
"# !pip install jiwer\n",
"# !pip install -U git+https://github.com/huggingface/transformers.git"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "vy63SoiZbnB5",
"outputId": "17391c60-b894-4571-b8a4-d46b18cb42e2"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting git+https://github.com/huggingface/transformers.git\n",
" Cloning https://github.com/huggingface/transformers.git to /tmp/pip-req-build-i45amciw\n",
" Running command git clone -q https://github.com/huggingface/transformers.git /tmp/pip-req-build-i45amciw\n",
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: huggingface-hub<1.0,>=0.1.0 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (0.1.0)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (3.4.2)\n",
"Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (4.10.1)\n",
"Requirement already satisfied: tokenizers!=0.11.3,>=0.10.1 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (0.11.4)\n",
"Requirement already satisfied: sacremoses in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (0.0.47)\n",
"Requirement already satisfied: numpy>=1.17 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (1.19.5)\n",
"Requirement already satisfied: tqdm>=4.27 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (4.62.3)\n",
"Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (2.23.0)\n",
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (6.0)\n",
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (21.3)\n",
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.7/dist-packages (from transformers==4.17.0.dev0) (2019.12.20)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from huggingface-hub<1.0,>=0.1.0->transformers==4.17.0.dev0) (3.10.0.2)\n",
"Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging>=20.0->transformers==4.17.0.dev0) (3.0.7)\n",
"Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-packages (from importlib-metadata->transformers==4.17.0.dev0) (3.7.0)\n",
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.17.0.dev0) (2.10)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.17.0.dev0) (2021.10.8)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.17.0.dev0) (3.0.4)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests->transformers==4.17.0.dev0) (1.24.3)\n",
"Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers==4.17.0.dev0) (1.15.0)\n",
"Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers==4.17.0.dev0) (1.1.0)\n",
"Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses->transformers==4.17.0.dev0) (7.1.2)\n"
]
}
],
"source": [
"# !pip install -U git+https://github.com/huggingface/transformers.git"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"id": "T2utsYSKszvv"
},
"outputs": [],
"source": [
"import platform\n",
"import multiprocessing\n",
"\n",
"import torch\n",
"import transformers\n",
"import datasets\n",
"\n",
"import soundfile"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ejKNEyJEcSeO"
},
"source": [
"## Print main infos"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "5P6I-W9ts-kR",
"outputId": "bd0c00d8-91c9-4b1a-8f2c-24182c2b227f"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Platform: Linux-5.11.0-37-generic-x86_64-with-glibc2.10\n",
"CPU cores: 60\n",
"Python version: 3.8.8\n",
"PyTorch version: 1.10.1+cu102\n",
"GPU is visible: True\n",
"Transformers version: 4.16.0.dev0\n",
"Datasets version: 1.17.1.dev0\n",
"soundfile version: 0.10.3\n"
]
}
],
"source": [
"print(f\"Platform: {platform.platform()}\")\n",
"print(f\"CPU cores: {multiprocessing.cpu_count()}\")\n",
"\n",
"print(f\"Python version: {platform.python_version()}\")\n",
"\n",
"print(f\"PyTorch version: {torch.__version__}\")\n",
"print(f\"GPU is visible: {torch.cuda.is_available()}\")\n",
"\n",
"print(f\"Transformers version: {transformers.__version__}\")\n",
"print(f\"Datasets version: {datasets.__version__}\")\n",
"\n",
"print(f\"soundfile version: {soundfile.__version__}\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_VUKw21PcSeQ"
},
"source": [
"## Check your GPU informations (if any)\n",
"If you launched an AI Training job with GPU resources, they should be listed below (Tesla V100s 32GB).\n",
"Driver and CUDA version "
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "YT7fRnKctggU",
"outputId": "1fb2c851-11c3-4fcd-ad23-9032f25d7f8d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sat Jan 29 03:27:00 2022 \n",
"+-----------------------------------------------------------------------------+\n",
"| NVIDIA-SMI 470.57.02 Driver Version: 470.57.02 CUDA Version: 11.4 |\n",
"|-------------------------------+----------------------+----------------------+\n",
"| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
"| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n",
"| | | MIG M. |\n",
"|===============================+======================+======================|\n",
"| 0 Tesla V100S-PCI... Off | 00000000:00:06.0 Off | 0 |\n",
"| N/A 35C P0 26W / 250W | 4MiB / 32510MiB | 0% Default |\n",
"| | | N/A |\n",
"+-------------------------------+----------------------+----------------------+\n",
" \n",
"+-----------------------------------------------------------------------------+\n",
"| Processes: |\n",
"| GPU GI CI PID Type Process name GPU Memory |\n",
"| ID ID Usage |\n",
"|=============================================================================|\n",
"| No running processes found |\n",
"+-----------------------------------------------------------------------------+\n"
]
}
],
"source": [
"!nvidia-smi"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 241,
"referenced_widgets": [
"50a1252082d942b09bfc620a9fa9d1d0",
"e270b7c82f784ebbbba4b17fb07c310d",
"32eb83bb6fd34c56bb345368e47e8f6f",
"34417f648cd54ed5b6d91f53af3e2713",
"7518572223ac480b89af2ab71f38b2ed",
"ce8bb7d0fb744e7b9ce2ff35cfdbc679",
"aa47a09bf444413ba95322d979c1908c",
"0b83a8775ea1441980d8ba945be752fe",
"127389ec566e423ab9a8f60a9d61caaa",
"4e4bc5550505497ba35f6bd7dde2893f",
"e5124c5171e04625b70795e4b7a18819",
"e410e7aecf23433f880a0f7169a8ce97",
"0f6b3cf1d33f46f594934874170bcd83",
"e549178ba75f4939aba6ae1cf743722a",
"9c28978adf974326a21259ae56f47fe9",
"7d3231a0b7794b11af662170b352d9e0"
]
},
"id": "3Wj2W4tWcSeR",
"outputId": "ad4eb63f-d643-45bd-b8d7-6adfefd9f773"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Login successful\n",
"Your token has been saved to /root/.huggingface/token\n",
"\u001b[1m\u001b[31mAuthenticated through git-crendential store but this isn't the helper defined on your machine.\n",
"You will have to re-authenticate when pushing to the Hugging Face Hub. Run the following command in your terminal to set it as the default\n",
"\n",
"git config --global credential.helper store\u001b[0m\n"
]
}
],
"source": [
"from huggingface_hub import notebook_login\n",
"\n",
"notebook_login()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"id": "wHpUxFQPeWE2"
},
"outputs": [],
"source": [
"%%capture\n",
"!apt install git-lfs"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TorMtpwPv6RQ"
},
"source": [
"## Quick training run with a dummy model and data\n",
"more information on https://github.com/huggingface/transformers/tree/master/examples/pytorch/speech-recognition"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "fevoJD15u4Ss",
"outputId": "64745ecf-65b0-494d-a88d-52826eaae0f8"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"--2022-01-28 09:12:30-- https://raw.githubusercontent.com/huggingface/transformers/master/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py\n",
"Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.111.133, 185.199.109.133, ...\n",
"Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 31209 (30K) [text/plain]\n",
"Saving to: ‘run_speech_recognition_ctc.py’\n",
"\n",
"run_speech_recognit 100%[===================>] 30.48K --.-KB/s in 0.001s \n",
"\n",
"2022-01-28 09:12:30 (21.4 MB/s) - ‘run_speech_recognition_ctc.py’ saved [31209/31209]\n",
"\n"
]
}
],
"source": [
"!wget -O run_speech_recognition_ctc.py https://raw.githubusercontent.com/huggingface/transformers/master/examples/pytorch/speech-recognition/run_speech_recognition_ctc.py\n",
"# !wget -O run_speech_recognition_ctc.py https://raw.githubusercontent.com/huggingface/transformers/master/examples/research_projects/robust-speech-event/run_speech_recognition_ctc_bnb.py"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"id": "XJRA51HjcSeT"
},
"outputs": [],
"source": [
"# \t--learning_rate=\"7.5e-5\" \\\n",
"# 84.5"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "hZOB6ZAnsvDX",
"outputId": "7b6a85b5-950c-46a1-c005-b885f8a9bd17"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"nvcc: NVIDIA (R) Cuda compiler driver\n",
"Copyright (c) 2005-2020 NVIDIA Corporation\n",
"Built on Mon_Oct_12_20:09:46_PDT_2020\n",
"Cuda compilation tools, release 11.1, V11.1.105\n",
"Build cuda_11.1.TC455_06.29190527_0\n"
]
}
],
"source": [
"!nvcc --version"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "NKlgW0E-sldT",
"outputId": "b925521a-29d2-4787-dd5b-6520dda688e4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting bitsandbytes-cuda111\n",
" Downloading bitsandbytes_cuda111-0.26.0-py3-none-any.whl (4.0 MB)\n",
"\u001b[K |████████████████████████████████| 4.0 MB 4.3 MB/s \n",
"\u001b[?25hInstalling collected packages: bitsandbytes-cuda111\n",
"Successfully installed bitsandbytes-cuda111-0.26.0\n"
]
}
],
"source": [
"!pip install bitsandbytes-cuda111"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"remove special characters from datasets: 100%|█| 2675/2675 [00:00<00:00, 3936.07\n",
"remove special characters from datasets: 100%|█| 1240/1240 [00:00<00:00, 5068.96\n",
"loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6\n",
"Model config Wav2Vec2Config {\n",
" \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
" \"activation_dropout\": 0.0,\n",
" \"adapter_kernel_size\": 3,\n",
" \"adapter_stride\": 2,\n",
" \"add_adapter\": false,\n",
" \"apply_spec_augment\": true,\n",
" \"architectures\": [\n",
" \"Wav2Vec2ForPreTraining\"\n",
" ],\n",
" \"attention_dropout\": 0.1,\n",
" \"bos_token_id\": 1,\n",
" \"classifier_proj_size\": 256,\n",
" \"codevector_dim\": 768,\n",
" \"contrastive_logits_temperature\": 0.1,\n",
" \"conv_bias\": true,\n",
" \"conv_dim\": [\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512\n",
" ],\n",
" \"conv_kernel\": [\n",
" 10,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 2,\n",
" 2\n",
" ],\n",
" \"conv_stride\": [\n",
" 5,\n",
" 2,\n",
" 2,\n",
" 2,\n",
" 2,\n",
" 2,\n",
" 2\n",
" ],\n",
" \"ctc_loss_reduction\": \"sum\",\n",
" \"ctc_zero_infinity\": false,\n",
" \"diversity_loss_weight\": 0.1,\n",
" \"do_stable_layer_norm\": true,\n",
" \"eos_token_id\": 2,\n",
" \"feat_extract_activation\": \"gelu\",\n",
" \"feat_extract_dropout\": 0.0,\n",
" \"feat_extract_norm\": \"layer\",\n",
" \"feat_proj_dropout\": 0.1,\n",
" \"feat_quantizer_dropout\": 0.0,\n",
" \"final_dropout\": 0.0,\n",
" \"gradient_checkpointing\": false,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout\": 0.1,\n",
" \"hidden_size\": 1024,\n",
" \"initializer_range\": 0.02,\n",
" \"intermediate_size\": 4096,\n",
" \"layer_norm_eps\": 1e-05,\n",
" \"layerdrop\": 0.1,\n",
" \"mask_feature_length\": 10,\n",
" \"mask_feature_min_masks\": 0,\n",
" \"mask_feature_prob\": 0.0,\n",
" \"mask_time_length\": 10,\n",
" \"mask_time_min_masks\": 2,\n",
" \"mask_time_prob\": 0.075,\n",
" \"model_type\": \"wav2vec2\",\n",
" \"num_adapter_layers\": 3,\n",
" \"num_attention_heads\": 16,\n",
" \"num_codevector_groups\": 2,\n",
" \"num_codevectors_per_group\": 320,\n",
" \"num_conv_pos_embedding_groups\": 16,\n",
" \"num_conv_pos_embeddings\": 128,\n",
" \"num_feat_extract_layers\": 7,\n",
" \"num_hidden_layers\": 24,\n",
" \"num_negatives\": 100,\n",
" \"output_hidden_size\": 1024,\n",
" \"pad_token_id\": 0,\n",
" \"proj_codevector_dim\": 768,\n",
" \"tdnn_dilation\": [\n",
" 1,\n",
" 2,\n",
" 3,\n",
" 1,\n",
" 1\n",
" ],\n",
" \"tdnn_dim\": [\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 1500\n",
" ],\n",
" \"tdnn_kernel\": [\n",
" 5,\n",
" 3,\n",
" 3,\n",
" 1,\n",
" 1\n",
" ],\n",
" \"torch_dtype\": \"float32\",\n",
" \"transformers_version\": \"4.16.0.dev0\",\n",
" \"use_weighted_layer_sum\": false,\n",
" \"vocab_size\": 32,\n",
" \"xvector_output_dim\": 512\n",
"}\n",
"\n",
"100%|█████████████████████████████████████████████| 1/1 [00:00<00:00, 6.29ba/s]\n",
"100%|█████████████████████████████████████████████| 1/1 [00:00<00:00, 21.18ba/s]\n",
"Didn't find file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/tokenizer.json. We won't load it.\n",
"loading file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/vocab.json\n",
"loading file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/tokenizer_config.json\n",
"loading file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/added_tokens.json\n",
"loading file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/special_tokens_map.json\n",
"loading file None\n",
"Adding to the vocabulary\n",
"Adding to the vocabulary\n",
"loading configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/config.json from cache at /workspace/.cache/huggingface/transformers/dabc27df63e37bd2a7a221c7774e35f36a280fbdf917cf54cadfc7df8c786f6f.a3e4c3c967d9985881e0ae550a5f6f668f897db5ab2e0802f9b97973b15970e6\n",
"Model config Wav2Vec2Config {\n",
" \"_name_or_path\": \"facebook/wav2vec2-xls-r-300m\",\n",
" \"activation_dropout\": 0.0,\n",
" \"adapter_kernel_size\": 3,\n",
" \"adapter_stride\": 2,\n",
" \"add_adapter\": false,\n",
" \"apply_spec_augment\": true,\n",
" \"architectures\": [\n",
" \"Wav2Vec2ForPreTraining\"\n",
" ],\n",
" \"attention_dropout\": 0.1,\n",
" \"bos_token_id\": 1,\n",
" \"classifier_proj_size\": 256,\n",
" \"codevector_dim\": 768,\n",
" \"contrastive_logits_temperature\": 0.1,\n",
" \"conv_bias\": true,\n",
" \"conv_dim\": [\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512\n",
" ],\n",
" \"conv_kernel\": [\n",
" 10,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 2,\n",
" 2\n",
" ],\n",
" \"conv_stride\": [\n",
" 5,\n",
" 2,\n",
" 2,\n",
" 2,\n",
" 2,\n",
" 2,\n",
" 2\n",
" ],\n",
" \"ctc_loss_reduction\": \"sum\",\n",
" \"ctc_zero_infinity\": false,\n",
" \"diversity_loss_weight\": 0.1,\n",
" \"do_stable_layer_norm\": true,\n",
" \"eos_token_id\": 2,\n",
" \"feat_extract_activation\": \"gelu\",\n",
" \"feat_extract_dropout\": 0.0,\n",
" \"feat_extract_norm\": \"layer\",\n",
" \"feat_proj_dropout\": 0.1,\n",
" \"feat_quantizer_dropout\": 0.0,\n",
" \"final_dropout\": 0.0,\n",
" \"gradient_checkpointing\": false,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout\": 0.1,\n",
" \"hidden_size\": 1024,\n",
" \"initializer_range\": 0.02,\n",
" \"intermediate_size\": 4096,\n",
" \"layer_norm_eps\": 1e-05,\n",
" \"layerdrop\": 0.1,\n",
" \"mask_feature_length\": 10,\n",
" \"mask_feature_min_masks\": 0,\n",
" \"mask_feature_prob\": 0.0,\n",
" \"mask_time_length\": 10,\n",
" \"mask_time_min_masks\": 2,\n",
" \"mask_time_prob\": 0.075,\n",
" \"model_type\": \"wav2vec2\",\n",
" \"num_adapter_layers\": 3,\n",
" \"num_attention_heads\": 16,\n",
" \"num_codevector_groups\": 2,\n",
" \"num_codevectors_per_group\": 320,\n",
" \"num_conv_pos_embedding_groups\": 16,\n",
" \"num_conv_pos_embeddings\": 128,\n",
" \"num_feat_extract_layers\": 7,\n",
" \"num_hidden_layers\": 24,\n",
" \"num_negatives\": 100,\n",
" \"output_hidden_size\": 1024,\n",
" \"pad_token_id\": 0,\n",
" \"proj_codevector_dim\": 768,\n",
" \"tdnn_dilation\": [\n",
" 1,\n",
" 2,\n",
" 3,\n",
" 1,\n",
" 1\n",
" ],\n",
" \"tdnn_dim\": [\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 1500\n",
" ],\n",
" \"tdnn_kernel\": [\n",
" 5,\n",
" 3,\n",
" 3,\n",
" 1,\n",
" 1\n",
" ],\n",
" \"torch_dtype\": \"float32\",\n",
" \"transformers_version\": \"4.16.0.dev0\",\n",
" \"use_weighted_layer_sum\": false,\n",
" \"vocab_size\": 32,\n",
" \"xvector_output_dim\": 512\n",
"}\n",
"\n",
"loading feature extractor configuration file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/preprocessor_config.json from cache at /workspace/.cache/huggingface/transformers/6fb028b95b394059e7d3b367bbca2382b576c66aebe896f04d2cd34e1b575f5b.d4484dc1c81456a2461485e7168b04347a7b9a4e3b1ef3aba723323b33e12326\n",
"Feature extractor Wav2Vec2FeatureExtractor {\n",
" \"do_normalize\": true,\n",
" \"feature_extractor_type\": \"Wav2Vec2FeatureExtractor\",\n",
" \"feature_size\": 1,\n",
" \"padding_side\": \"right\",\n",
" \"padding_value\": 0,\n",
" \"return_attention_mask\": true,\n",
" \"sampling_rate\": 16000\n",
"}\n",
"\n",
"loading weights file https://huggingface.co/facebook/wav2vec2-xls-r-300m/resolve/main/pytorch_model.bin from cache at /workspace/.cache/huggingface/transformers/1e6a6507f3b689035cd4b247e2a37c154e27f39143f31357a49b4e38baeccc36.1edb32803799e27ed554eb7dd935f6745b1a0b17b0ea256442fe24db6eb546cd\n",
"Some weights of the model checkpoint at facebook/wav2vec2-xls-r-300m were not used when initializing Wav2Vec2ForCTC: ['project_hid.weight', 'quantizer.weight_proj.weight', 'project_q.bias', 'project_q.weight', 'quantizer.weight_proj.bias', 'quantizer.codevectors', 'project_hid.bias']\n",
"- This IS expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
"- This IS NOT expected if you are initializing Wav2Vec2ForCTC from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
"Some weights of Wav2Vec2ForCTC were not initialized from the model checkpoint at facebook/wav2vec2-xls-r-300m and are newly initialized: ['lm_head.bias', 'lm_head.weight']\n",
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
"preprocess datasets: 100%|██████████████████| 2675/2675 [00:29<00:00, 90.68ex/s]\n",
"preprocess datasets: 100%|██████████████████| 1240/1240 [00:12<00:00, 97.50ex/s]\n",
"100%|████████████████████████████████████████████| 3/3 [00:00<00:00, 765.71ba/s]\n",
"100%|████████████████████████████████████████████| 2/2 [00:00<00:00, 988.06ba/s]\n",
"Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-sursilvan/preprocessor_config.json\n",
"tokenizer config file saved in ./wav2vec2-large-xls-r-300m-romansh-sursilvan/tokenizer_config.json\n",
"Special tokens file saved in ./wav2vec2-large-xls-r-300m-romansh-sursilvan/special_tokens_map.json\n",
"added tokens file saved in ./wav2vec2-large-xls-r-300m-romansh-sursilvan/added_tokens.json\n",
"Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-sursilvan/config.json\n",
"loading feature extractor configuration file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/preprocessor_config.json\n",
"loading configuration file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/config.json\n",
"Model config Wav2Vec2Config {\n",
" \"_name_or_path\": \"./wav2vec2-large-xls-r-300m-romansh-sursilvan\",\n",
" \"activation_dropout\": 0.1,\n",
" \"adapter_kernel_size\": 3,\n",
" \"adapter_stride\": 2,\n",
" \"add_adapter\": false,\n",
" \"apply_spec_augment\": true,\n",
" \"architectures\": [\n",
" \"Wav2Vec2ForPreTraining\"\n",
" ],\n",
" \"attention_dropout\": 0.0,\n",
" \"bos_token_id\": 1,\n",
" \"classifier_proj_size\": 256,\n",
" \"codevector_dim\": 768,\n",
" \"contrastive_logits_temperature\": 0.1,\n",
" \"conv_bias\": true,\n",
" \"conv_dim\": [\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512\n",
" ],\n",
" \"conv_kernel\": [\n",
" 10,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 3,\n",
" 2,\n",
" 2\n",
" ],\n",
" \"conv_stride\": [\n",
" 5,\n",
" 2,\n",
" 2,\n",
" 2,\n",
" 2,\n",
" 2,\n",
" 2\n",
" ],\n",
" \"ctc_loss_reduction\": \"mean\",\n",
" \"ctc_zero_infinity\": false,\n",
" \"diversity_loss_weight\": 0.1,\n",
" \"do_stable_layer_norm\": true,\n",
" \"eos_token_id\": 2,\n",
" \"feat_extract_activation\": \"gelu\",\n",
" \"feat_extract_dropout\": 0.0,\n",
" \"feat_extract_norm\": \"layer\",\n",
" \"feat_proj_dropout\": 0.0,\n",
" \"feat_quantizer_dropout\": 0.0,\n",
" \"final_dropout\": 0.0,\n",
" \"hidden_act\": \"gelu\",\n",
" \"hidden_dropout\": 0.0,\n",
" \"hidden_size\": 1024,\n",
" \"initializer_range\": 0.02,\n",
" \"intermediate_size\": 4096,\n",
" \"layer_norm_eps\": 1e-05,\n",
" \"layerdrop\": 0.0,\n",
" \"mask_feature_length\": 64,\n",
" \"mask_feature_min_masks\": 0,\n",
" \"mask_feature_prob\": 0.25,\n",
" \"mask_time_length\": 10,\n",
" \"mask_time_min_masks\": 2,\n",
" \"mask_time_prob\": 0.75,\n",
" \"model_type\": \"wav2vec2\",\n",
" \"num_adapter_layers\": 3,\n",
" \"num_attention_heads\": 16,\n",
" \"num_codevector_groups\": 2,\n",
" \"num_codevectors_per_group\": 320,\n",
" \"num_conv_pos_embedding_groups\": 16,\n",
" \"num_conv_pos_embeddings\": 128,\n",
" \"num_feat_extract_layers\": 7,\n",
" \"num_hidden_layers\": 24,\n",
" \"num_negatives\": 100,\n",
" \"output_hidden_size\": 1024,\n",
" \"pad_token_id\": 37,\n",
" \"proj_codevector_dim\": 768,\n",
" \"tdnn_dilation\": [\n",
" 1,\n",
" 2,\n",
" 3,\n",
" 1,\n",
" 1\n",
" ],\n",
" \"tdnn_dim\": [\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 512,\n",
" 1500\n",
" ],\n",
" \"tdnn_kernel\": [\n",
" 5,\n",
" 3,\n",
" 3,\n",
" 1,\n",
" 1\n",
" ],\n",
" \"torch_dtype\": \"float32\",\n",
" \"transformers_version\": \"4.16.0.dev0\",\n",
" \"use_weighted_layer_sum\": false,\n",
" \"vocab_size\": 40,\n",
" \"xvector_output_dim\": 512\n",
"}\n",
"\n",
"loading feature extractor configuration file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/preprocessor_config.json\n",
"Feature extractor Wav2Vec2FeatureExtractor {\n",
" \"do_normalize\": true,\n",
" \"feature_extractor_type\": \"Wav2Vec2FeatureExtractor\",\n",
" \"feature_size\": 1,\n",
" \"padding_side\": \"right\",\n",
" \"padding_value\": 0,\n",
" \"return_attention_mask\": true,\n",
" \"sampling_rate\": 16000\n",
"}\n",
"\n",
"Didn't find file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/tokenizer.json. We won't load it.\n",
"loading file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/vocab.json\n",
"loading file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/tokenizer_config.json\n",
"loading file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/added_tokens.json\n",
"loading file ./wav2vec2-large-xls-r-300m-romansh-sursilvan/special_tokens_map.json\n",
"loading file None\n",
"Adding to the vocabulary\n",
"Adding to the vocabulary\n",
"/workspace/votic_training/./wav2vec2-large-xls-r-300m-romansh-sursilvan is already a clone of https://huggingface.co/infinitejoy/wav2vec2-large-xls-r-300m-romansh-sursilvan. Make sure you pull the latest changes with `repo.git_pull()`.\n",
"Using amp half precision backend\n",
"The following columns in the training set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"/opt/conda/lib/python3.8/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use thePyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
" warnings.warn(\n",
"***** Running training *****\n",
" Num examples = 2675\n",
" Num Epochs = 120\n",
" Instantaneous batch size per device = 32\n",
" Total train batch size (w. parallel, distributed & accumulation) = 32\n",
" Gradient Accumulation steps = 1\n",
" Total optimization steps = 10080\n",
" 20%|██████▋ | 2000/10080 [1:05:32<5:02:13, 2.24s/it]The following columns in the evaluation set don't have a corresponding argument in `Wav2Vec2ForCTC.forward` and have been ignored: input_length.\n",
"***** Running Evaluation *****\n",
" Num examples = 1240\n",
" Batch size = 1\n",
"\n",
" 0%| | 0/1240 [00:00, ?it/s]\u001b[A\n",
" 0%| | 3/1240 [00:00<00:43, 28.65it/s]\u001b[A\n",
" 0%|▏ | 6/1240 [00:00<00:59, 20.75it/s]\u001b[A\n",
" 1%|▎ | 9/1240 [00:00<01:07, 18.28it/s]\u001b[A\n",
" 1%|▎ | 11/1240 [00:00<01:06, 18.60it/s]\u001b[A\n",
" 1%|▍ | 13/1240 [00:00<01:09, 17.68it/s]\u001b[A\n",
" 1%|▍ | 15/1240 [00:00<01:08, 17.77it/s]\u001b[A\n",
" 1%|▌ | 17/1240 [00:00<01:08, 17.91it/s]\u001b[A\n",
" 2%|▋ | 19/1240 [00:01<01:09, 17.57it/s]\u001b[A\n",
" 2%|▋ | 21/1240 [00:01<01:12, 16.91it/s]\u001b[A\n",
" 2%|▊ | 23/1240 [00:01<01:17, 15.74it/s]\u001b[A\n",
" 2%|▊ | 25/1240 [00:01<01:13, 16.48it/s]\u001b[A\n",
" 2%|▉ | 27/1240 [00:01<01:18, 15.47it/s]\u001b[A\n",
" 2%|▉ | 29/1240 [00:01<01:15, 16.14it/s]\u001b[A\n",
" 2%|█ | 31/1240 [00:01<01:12, 16.75it/s]\u001b[A\n",
" 3%|█ | 33/1240 [00:01<01:17, 15.53it/s]\u001b[A\n",
" 3%|█▏ | 35/1240 [00:02<01:16, 15.74it/s]\u001b[A\n",
" 3%|█▏ | 37/1240 [00:02<01:17, 15.58it/s]\u001b[A\n",
" 3%|█▎ | 39/1240 [00:02<01:27, 13.79it/s]\u001b[A\n",
" 3%|█▎ | 41/1240 [00:02<01:28, 13.57it/s]\u001b[A\n",
" 3%|█▍ | 43/1240 [00:02<01:23, 14.29it/s]\u001b[A\n",
" 4%|█▍ | 45/1240 [00:02<01:22, 14.47it/s]\u001b[A\n",
" 4%|█▌ | 47/1240 [00:02<01:19, 14.92it/s]\u001b[A\n",
" 4%|█▌ | 49/1240 [00:03<01:18, 15.19it/s]\u001b[A\n",
" 4%|█▋ | 51/1240 [00:03<01:19, 14.98it/s]\u001b[A\n",
" 4%|█▊ | 53/1240 [00:03<01:18, 15.03it/s]\u001b[A\n",
" 4%|█▊ | 55/1240 [00:03<01:20, 14.66it/s]\u001b[A\n",
" 5%|█▉ | 57/1240 [00:03<01:22, 14.40it/s]\u001b[A\n",
" 5%|█▉ | 59/1240 [00:03<01:22, 14.35it/s]\u001b[A\n",
" 5%|██ | 61/1240 [00:03<01:21, 14.42it/s]\u001b[A\n",
" 5%|██ | 63/1240 [00:04<01:25, 13.76it/s]\u001b[A\n",
" 5%|██▏ | 65/1240 [00:04<01:24, 13.83it/s]\u001b[A\n",
" 5%|██▏ | 67/1240 [00:04<01:21, 14.34it/s]\u001b[A\n",
" 6%|██▎ | 69/1240 [00:04<01:17, 15.05it/s]\u001b[A\n",
" 6%|██▎ | 71/1240 [00:04<01:13, 15.81it/s]\u001b[A\n",
" 6%|██▍ | 73/1240 [00:04<01:11, 16.29it/s]\u001b[A\n",
" 6%|██▍ | 75/1240 [00:04<01:09, 16.76it/s]\u001b[A\n",
" 6%|██▌ | 77/1240 [00:04<01:06, 17.47it/s]\u001b[A\n",
" 6%|██▌ | 79/1240 [00:04<01:07, 17.16it/s]\u001b[A\n",
" 7%|██▋ | 81/1240 [00:05<01:06, 17.46it/s]\u001b[A\n",
" 7%|██▋ | 83/1240 [00:05<01:09, 16.70it/s]\u001b[A\n",
" 7%|██▊ | 85/1240 [00:05<01:10, 16.32it/s]\u001b[A\n",
" 7%|██▉ | 87/1240 [00:05<01:08, 16.80it/s]\u001b[A\n",
" 7%|██▉ | 89/1240 [00:05<01:09, 16.50it/s]\u001b[A\n",
" 7%|███ | 92/1240 [00:05<01:04, 17.90it/s]\u001b[A\n",
" 8%|███▏ | 95/1240 [00:05<01:02, 18.35it/s]\u001b[A\n",
" 8%|███▏ | 97/1240 [00:05<01:02, 18.42it/s]\u001b[A\n",
" 8%|███▏ | 100/1240 [00:06<01:04, 17.66it/s]\u001b[A\n",
" 8%|███▎ | 102/1240 [00:06<01:05, 17.24it/s]\u001b[A\n",
" 8%|███▎ | 104/1240 [00:06<01:08, 16.47it/s]\u001b[A\n",
" 9%|███▍ | 106/1240 [00:06<01:10, 16.14it/s]\u001b[A\n",
" 9%|███▍ | 108/1240 [00:06<01:10, 16.01it/s]\u001b[A\n",
" 9%|███▌ | 110/1240 [00:06<01:10, 16.01it/s]\u001b[A\n",
" 9%|███▌ | 112/1240 [00:06<01:09, 16.13it/s]\u001b[A\n",
" 9%|███▋ | 114/1240 [00:07<01:12, 15.43it/s]\u001b[A\n",
" 9%|███▋ | 116/1240 [00:07<01:09, 16.23it/s]\u001b[A\n",
" 10%|███▊ | 118/1240 [00:07<01:09, 16.24it/s]\u001b[A\n",
" 10%|███▊ | 120/1240 [00:07<01:07, 16.52it/s]\u001b[A\n",
" 10%|███▉ | 122/1240 [00:07<01:04, 17.36it/s]\u001b[A\n",
" 10%|████ | 124/1240 [00:07<01:02, 17.92it/s]\u001b[A\n",
" 10%|████ | 126/1240 [00:07<01:03, 17.63it/s]\u001b[A\n",
" 10%|████▏ | 128/1240 [00:07<01:03, 17.38it/s]\u001b[A\n",
" 11%|████▏ | 131/1240 [00:08<01:02, 17.61it/s]\u001b[A\n",
" 11%|████▎ | 133/1240 [00:08<01:01, 17.90it/s]\u001b[A\n",
" 11%|████▎ | 135/1240 [00:08<01:01, 18.11it/s]\u001b[A\n",
" 11%|████▍ | 137/1240 [00:08<01:00, 18.31it/s]\u001b[A\n",
" 11%|████▍ | 139/1240 [00:08<01:03, 17.36it/s]\u001b[A\n",
" 11%|████▌ | 141/1240 [00:08<01:03, 17.36it/s]\u001b[A\n",
" 12%|████▌ | 143/1240 [00:08<01:02, 17.62it/s]\u001b[A\n",
" 12%|████▋ | 145/1240 [00:08<01:06, 16.46it/s]\u001b[A\n",
" 12%|████▋ | 147/1240 [00:08<01:04, 16.96it/s]\u001b[A\n",
" 12%|████▊ | 149/1240 [00:09<01:02, 17.42it/s]\u001b[A\n",
" 12%|████▊ | 151/1240 [00:09<01:03, 17.21it/s]\u001b[A\n",
" 12%|████▉ | 153/1240 [00:09<01:00, 17.88it/s]\u001b[A\n",
" 12%|█████ | 155/1240 [00:09<00:59, 18.15it/s]\u001b[A\n",
" 13%|█████ | 157/1240 [00:09<01:03, 17.18it/s]\u001b[A\n",
" 13%|█████▏ | 159/1240 [00:09<01:02, 17.20it/s]\u001b[A\n",
" 13%|█████▏ | 161/1240 [00:09<01:01, 17.43it/s]\u001b[A\n",
" 13%|█████▎ | 163/1240 [00:09<01:02, 17.23it/s]\u001b[A\n",
" 13%|█████▎ | 165/1240 [00:10<01:02, 17.10it/s]\u001b[A\n",
" 13%|█████▍ | 167/1240 [00:10<01:06, 16.08it/s]\u001b[A\n",
" 14%|█████▍ | 169/1240 [00:10<01:05, 16.35it/s]\u001b[A\n",
" 14%|█████▌ | 171/1240 [00:10<01:02, 17.23it/s]\u001b[A\n",
" 14%|█████▌ | 173/1240 [00:10<01:04, 16.56it/s]\u001b[A\n",
" 14%|█████▋ | 175/1240 [00:10<01:04, 16.64it/s]\u001b[A\n",
" 14%|█████▋ | 178/1240 [00:10<01:00, 17.43it/s]\u001b[A\n",
" 15%|█████▊ | 180/1240 [00:10<01:00, 17.59it/s]\u001b[A\n",
" 15%|█████▊ | 182/1240 [00:11<01:01, 17.11it/s]\u001b[A\n",
" 15%|█████▉ | 184/1240 [00:11<01:02, 16.82it/s]\u001b[A\n",
" 15%|██████ | 186/1240 [00:11<01:04, 16.33it/s]\u001b[A\n",
" 15%|██████ | 188/1240 [00:11<01:05, 16.15it/s]\u001b[A\n",
" 15%|██████▏ | 190/1240 [00:11<01:02, 16.92it/s]\u001b[A\n",
" 16%|██████▏ | 193/1240 [00:11<00:55, 18.74it/s]\u001b[A\n",
" 16%|██████▎ | 195/1240 [00:11<00:56, 18.37it/s]\u001b[A\n",
" 16%|██████▎ | 197/1240 [00:11<00:56, 18.44it/s]\u001b[A\n",
" 16%|██████▍ | 199/1240 [00:11<00:55, 18.81it/s]\u001b[A\n",
" 16%|██████▍ | 201/1240 [00:12<00:55, 18.56it/s]\u001b[A\n",
" 16%|██████▌ | 203/1240 [00:12<00:58, 17.73it/s]\u001b[A\n",
" 17%|██████▌ | 205/1240 [00:12<00:58, 17.80it/s]\u001b[A\n",
" 17%|██████▋ | 207/1240 [00:12<00:58, 17.77it/s]\u001b[A\n",
" 17%|██████▋ | 209/1240 [00:12<01:00, 16.97it/s]\u001b[A\n",
" 17%|██████▊ | 211/1240 [00:12<00:59, 17.24it/s]\u001b[A\n",
" 17%|██████▊ | 213/1240 [00:12<00:59, 17.41it/s]\u001b[A\n",
" 17%|██████▉ | 215/1240 [00:12<00:59, 17.30it/s]\u001b[A\n",
" 18%|███████ | 217/1240 [00:13<00:59, 17.14it/s]\u001b[A\n",
" 18%|███████ | 219/1240 [00:13<00:58, 17.44it/s]\u001b[A\n",
" 18%|███████▏ | 221/1240 [00:13<00:59, 17.20it/s]\u001b[A\n",
" 18%|███████▏ | 223/1240 [00:13<00:58, 17.47it/s]\u001b[A\n",
" 18%|███████▎ | 225/1240 [00:13<00:55, 18.13it/s]\u001b[A\n",
" 18%|███████▎ | 228/1240 [00:13<00:53, 18.88it/s]\u001b[A\n",
" 19%|███████▍ | 230/1240 [00:13<00:53, 19.04it/s]\u001b[A\n",
" 19%|███████▍ | 232/1240 [00:13<00:55, 18.30it/s]\u001b[A\n",
" 19%|███████▌ | 234/1240 [00:13<00:54, 18.30it/s]\u001b[A\n",
" 19%|███████▌ | 236/1240 [00:14<00:55, 18.01it/s]\u001b[A\n",
" 19%|███████▋ | 239/1240 [00:14<00:53, 18.81it/s]\u001b[A\n",
" 19%|███████▊ | 241/1240 [00:14<00:54, 18.39it/s]\u001b[A\n",
" 20%|███████▊ | 243/1240 [00:14<00:56, 17.55it/s]\u001b[A\n",
" 20%|███████▉ | 245/1240 [00:14<00:54, 18.10it/s]\u001b[A\n",
" 20%|███████▉ | 247/1240 [00:14<00:55, 18.01it/s]\u001b[A\n",
" 20%|████████ | 249/1240 [00:14<00:53, 18.42it/s]\u001b[A\n",
" 20%|████████ | 251/1240 [00:14<00:54, 18.23it/s]\u001b[A\n",
" 20%|████████▏ | 253/1240 [00:14<00:55, 17.87it/s]\u001b[A\n",
" 21%|████████▏ | 255/1240 [00:15<00:58, 16.93it/s]\u001b[A\n",
" 21%|████████▎ | 257/1240 [00:15<00:55, 17.59it/s]\u001b[A\n",
" 21%|████████▍ | 260/1240 [00:15<00:52, 18.65it/s]\u001b[A\n",
" 21%|████████▍ | 262/1240 [00:15<00:52, 18.60it/s]\u001b[A\n",
" 21%|████████▌ | 265/1240 [00:15<00:54, 18.04it/s]\u001b[A\n",
" 22%|████████▌ | 267/1240 [00:15<00:52, 18.36it/s]\u001b[A\n",
" 22%|████████▋ | 269/1240 [00:15<00:54, 17.77it/s]\u001b[A\n",
" 22%|████████▋ | 271/1240 [00:16<00:58, 16.43it/s]\u001b[A\n",
" 22%|████████▊ | 273/1240 [00:16<00:58, 16.52it/s]\u001b[A\n",
" 22%|████████▊ | 275/1240 [00:16<00:55, 17.28it/s]\u001b[A\n",
" 22%|████████▉ | 277/1240 [00:16<00:57, 16.71it/s]\u001b[A\n",
" 22%|█████████ | 279/1240 [00:16<00:58, 16.32it/s]\u001b[A\n",
" 23%|█████████ | 281/1240 [00:16<00:57, 16.58it/s]\u001b[A\n",
" 23%|█████████▏ | 283/1240 [00:16<01:00, 15.91it/s]\u001b[A\n",
" 23%|█████████▏ | 285/1240 [00:16<00:59, 16.07it/s]\u001b[A\n",
" 23%|█████████▎ | 287/1240 [00:16<00:59, 16.11it/s]\u001b[A\n",
" 23%|█████████▎ | 289/1240 [00:17<00:56, 16.97it/s]\u001b[A\n",
" 23%|█████████▍ | 291/1240 [00:17<00:55, 17.25it/s]\u001b[A\n",
" 24%|█████████▍ | 293/1240 [00:17<00:55, 16.97it/s]\u001b[A\n",
" 24%|█████████▌ | 295/1240 [00:17<00:55, 16.88it/s]\u001b[A\n",
" 24%|█████████▌ | 297/1240 [00:17<00:53, 17.59it/s]\u001b[A\n",
" 24%|█████████▋ | 299/1240 [00:17<00:53, 17.57it/s]\u001b[A\n",
" 24%|█████████▋ | 301/1240 [00:17<00:53, 17.39it/s]\u001b[A\n",
" 24%|█████████▊ | 303/1240 [00:17<00:52, 17.86it/s]\u001b[A\n",
" 25%|█████████▊ | 305/1240 [00:18<00:52, 17.74it/s]\u001b[A\n",
" 25%|█████████▉ | 307/1240 [00:18<00:54, 17.04it/s]\u001b[A\n",
" 25%|█████████▉ | 309/1240 [00:18<00:52, 17.71it/s]\u001b[A\n",
" 25%|██████████ | 312/1240 [00:18<00:49, 18.68it/s]\u001b[A\n",
" 25%|██████████▏ | 315/1240 [00:18<00:47, 19.33it/s]\u001b[A\n",
" 26%|██████████▎ | 318/1240 [00:18<00:47, 19.56it/s]\u001b[A\n",
" 26%|██████████▎ | 320/1240 [00:18<00:48, 18.82it/s]\u001b[A\n",
" 26%|██████████▍ | 322/1240 [00:18<00:49, 18.56it/s]\u001b[A\n",
" 26%|██████████▍ | 324/1240 [00:19<00:49, 18.43it/s]\u001b[A\n",
" 26%|██████████▌ | 327/1240 [00:19<00:45, 20.04it/s]\u001b[A\n",
" 27%|██████████▌ | 329/1240 [00:19<00:47, 19.32it/s]\u001b[A\n",
" 27%|██████████▋ | 331/1240 [00:19<00:49, 18.44it/s]\u001b[A\n",
" 27%|██████████▋ | 333/1240 [00:19<00:49, 18.26it/s]\u001b[A\n",
" 27%|██████████▊ | 335/1240 [00:19<00:53, 16.86it/s]\u001b[A\n",
" 27%|██████████▊ | 337/1240 [00:19<00:54, 16.54it/s]\u001b[A\n",
" 27%|██████████▉ | 339/1240 [00:19<00:55, 16.25it/s]\u001b[A\n",
" 28%|███████████ | 341/1240 [00:20<00:53, 16.72it/s]\u001b[A\n",
" 28%|███████████ | 343/1240 [00:20<00:56, 15.79it/s]\u001b[A\n",
" 28%|███████████▏ | 346/1240 [00:20<00:50, 17.69it/s]\u001b[A\n",
" 28%|███████████▏ | 348/1240 [00:20<00:50, 17.57it/s]\u001b[A\n",
" 28%|███████████▎ | 350/1240 [00:20<00:49, 18.10it/s]\u001b[A\n",
" 28%|███████████▎ | 352/1240 [00:20<00:51, 17.27it/s]\u001b[A\n",
" 29%|███████████▍ | 354/1240 [00:20<00:51, 17.25it/s]\u001b[A\n",
" 29%|███████████▍ | 356/1240 [00:20<00:50, 17.65it/s]\u001b[A\n",
" 29%|███████████▌ | 358/1240 [00:20<00:49, 17.74it/s]\u001b[A\n",
" 29%|███████████▌ | 360/1240 [00:21<00:50, 17.31it/s]\u001b[A\n",
" 29%|███████████▋ | 363/1240 [00:21<00:46, 18.78it/s]\u001b[A\n",
" 29%|███████████▊ | 365/1240 [00:21<00:46, 18.82it/s]\u001b[A\n",
" 30%|███████████▊ | 367/1240 [00:21<00:48, 17.98it/s]\u001b[A\n",
" 30%|███████████▉ | 369/1240 [00:21<00:50, 17.11it/s]\u001b[A\n",
" 30%|███████████▉ | 371/1240 [00:21<00:49, 17.45it/s]\u001b[A\n",
" 30%|████████████ | 373/1240 [00:21<00:53, 16.21it/s]\u001b[A\n",
" 30%|████████████ | 375/1240 [00:21<00:51, 16.73it/s]\u001b[A\n",
" 30%|████████████▏ | 377/1240 [00:22<00:53, 16.14it/s]\u001b[A\n",
" 31%|████████████▏ | 379/1240 [00:22<00:51, 16.86it/s]\u001b[A\n",
" 31%|████████████▎ | 381/1240 [00:22<00:49, 17.48it/s]\u001b[A\n",
" 31%|████████████▍ | 384/1240 [00:22<00:45, 18.63it/s]\u001b[A\n",
" 31%|████████████▍ | 386/1240 [00:22<00:47, 17.89it/s]\u001b[A\n",
" 31%|████████████▌ | 388/1240 [00:22<00:48, 17.49it/s]\u001b[A\n",
" 32%|████████████▌ | 391/1240 [00:22<00:48, 17.58it/s]\u001b[A\n",
" 32%|████████████▋ | 394/1240 [00:22<00:44, 18.91it/s]\u001b[A\n",
" 32%|████████████▊ | 397/1240 [00:23<00:43, 19.45it/s]\u001b[A\n",
" 32%|████████████▊ | 399/1240 [00:23<00:43, 19.44it/s]\u001b[A\n",
" 32%|████████████▉ | 402/1240 [00:23<00:43, 19.09it/s]\u001b[A\n",
" 33%|█████████████ | 404/1240 [00:23<00:45, 18.56it/s]\u001b[A\n",
" 33%|█████████████ | 406/1240 [00:23<00:45, 18.39it/s]\u001b[A\n",
" 33%|█████████████▏ | 408/1240 [00:23<00:44, 18.72it/s]\u001b[A\n",
" 33%|█████████████▏ | 410/1240 [00:23<00:47, 17.65it/s]\u001b[A\n",
" 33%|█████████████▎ | 413/1240 [00:24<00:44, 18.46it/s]\u001b[A\n",
" 34%|█████████████▍ | 416/1240 [00:24<00:42, 19.26it/s]\u001b[A\n",
" 34%|█████████████▍ | 418/1240 [00:24<00:42, 19.21it/s]\u001b[A\n",
" 34%|█████████████▌ | 420/1240 [00:24<00:44, 18.64it/s]\u001b[A\n",
" 34%|█████████████▌ | 422/1240 [00:24<00:47, 17.40it/s]\u001b[A\n",
" 34%|█████████████▋ | 424/1240 [00:24<00:47, 17.21it/s]\u001b[A\n",
" 34%|█████████████▋ | 426/1240 [00:24<00:47, 17.29it/s]\u001b[A\n",
" 35%|█████████████▊ | 428/1240 [00:24<00:45, 17.68it/s]\u001b[A\n",
" 35%|█████████████▊ | 430/1240 [00:24<00:47, 17.22it/s]\u001b[A\n",
" 35%|█████████████▉ | 432/1240 [00:25<00:45, 17.92it/s]\u001b[A\n",
" 35%|██████████████ | 434/1240 [00:25<00:45, 17.89it/s]\u001b[A\n",
" 35%|██████████████ | 436/1240 [00:25<00:45, 17.54it/s]\u001b[A\n",
" 35%|██████████████▏ | 438/1240 [00:25<00:46, 17.37it/s]\u001b[A\n",
" 35%|██████████████▏ | 440/1240 [00:25<00:45, 17.74it/s]\u001b[A\n",
" 36%|██████████████▎ | 442/1240 [00:25<00:43, 18.31it/s]\u001b[A\n",
" 36%|██████████████▎ | 444/1240 [00:25<00:43, 18.44it/s]\u001b[A\n",
" 36%|██████████████▍ | 446/1240 [00:25<00:45, 17.38it/s]\u001b[A\n",
" 36%|██████████████▍ | 448/1240 [00:25<00:47, 16.82it/s]\u001b[A\n",
" 36%|██████████████▌ | 450/1240 [00:26<00:44, 17.56it/s]\u001b[A\n",
" 36%|██████████████▌ | 452/1240 [00:26<00:47, 16.72it/s]\u001b[A\n",
" 37%|██████████████▋ | 454/1240 [00:26<00:49, 15.76it/s]\u001b[A\n",
" 37%|██████████████▋ | 457/1240 [00:26<00:45, 17.27it/s]\u001b[A\n",
" 37%|██████████████▊ | 460/1240 [00:26<00:42, 18.41it/s]\u001b[A\n",
" 37%|██████████████▉ | 463/1240 [00:26<00:39, 19.61it/s]\u001b[A\n",
" 38%|███████████████ | 465/1240 [00:26<00:41, 18.80it/s]\u001b[A\n",
" 38%|███████████████ | 467/1240 [00:27<00:44, 17.27it/s]\u001b[A\n",
" 38%|███████████████▏ | 469/1240 [00:27<00:47, 16.35it/s]\u001b[A\n",
" 38%|███████████████▏ | 472/1240 [00:27<00:43, 17.70it/s]\u001b[A\n",
" 38%|███████████████▎ | 475/1240 [00:27<00:41, 18.61it/s]\u001b[A\n",
" 38%|███████████████▍ | 477/1240 [00:27<00:41, 18.21it/s]\u001b[A\n",
" 39%|███████████████▍ | 480/1240 [00:27<00:41, 18.45it/s]\u001b[A\n",
" 39%|███████████████▌ | 482/1240 [00:27<00:41, 18.17it/s]\u001b[A\n",
" 39%|███████████████▌ | 484/1240 [00:27<00:41, 18.03it/s]\u001b[A\n",
" 39%|███████████████▋ | 487/1240 [00:28<00:40, 18.76it/s]\u001b[A\n",
" 39%|███████████████▊ | 489/1240 [00:28<00:40, 18.37it/s]\u001b[A\n",
" 40%|███████████████▊ | 492/1240 [00:28<00:39, 19.03it/s]\u001b[A\n",
" 40%|███████████████▉ | 494/1240 [00:28<00:40, 18.23it/s]\u001b[A\n",
" 40%|████████████████ | 496/1240 [00:28<00:40, 18.54it/s]\u001b[A\n",
" 40%|████████████████ | 498/1240 [00:28<00:40, 18.52it/s]\u001b[A\n",
" 40%|████████████████▏ | 500/1240 [00:28<00:39, 18.63it/s]\u001b[A\n",
" 40%|████████████████▏ | 502/1240 [00:28<00:40, 18.33it/s]\u001b[A\n",
" 41%|████████████████▎ | 504/1240 [00:29<00:39, 18.79it/s]\u001b[A\n",
" 41%|████████████████▎ | 507/1240 [00:29<00:38, 19.10it/s]\u001b[A\n",
" 41%|████████████████▍ | 509/1240 [00:29<00:45, 16.07it/s]\u001b[A\n",
" 41%|████████████████▍ | 511/1240 [00:29<00:43, 16.64it/s]\u001b[A\n",
" 41%|████████████████▌ | 514/1240 [00:29<00:40, 17.74it/s]\u001b[A\n",
" 42%|████████████████▋ | 516/1240 [00:29<00:40, 17.71it/s]\u001b[A\n",
" 42%|████████████████▋ | 518/1240 [00:29<00:41, 17.44it/s]\u001b[A\n",
" 42%|████████████████▊ | 521/1240 [00:30<00:37, 19.20it/s]\u001b[A\n",
" 42%|████████████████▉ | 524/1240 [00:30<00:34, 20.62it/s]\u001b[A\n",
" 42%|█████████████████ | 527/1240 [00:30<00:37, 19.25it/s]\u001b[A\n",
" 43%|█████████████████ | 529/1240 [00:30<00:37, 19.15it/s]\u001b[A\n",
" 43%|█████████████████▏ | 531/1240 [00:30<00:38, 18.44it/s]\u001b[A\n",
" 43%|█████████████████▏ | 533/1240 [00:30<00:40, 17.41it/s]\u001b[A\n",
" 43%|█████████████████▎ | 535/1240 [00:30<00:43, 16.05it/s]\u001b[A\n",
" 43%|█████████████████▎ | 537/1240 [00:30<00:45, 15.61it/s]\u001b[A\n",
" 44%|█████████████████▍ | 540/1240 [00:31<00:40, 17.22it/s]\u001b[A\n",
" 44%|█████████████████▌ | 543/1240 [00:31<00:39, 17.80it/s]\u001b[A\n",
" 44%|█████████████████▌ | 545/1240 [00:31<00:42, 16.38it/s]\u001b[A\n",
" 44%|█████████████████▋ | 548/1240 [00:31<00:39, 17.49it/s]\u001b[A\n",
" 44%|█████████████████▋ | 550/1240 [00:31<00:39, 17.60it/s]\u001b[A\n",
" 45%|█████████████████▊ | 552/1240 [00:31<00:38, 17.67it/s]\u001b[A\n",
" 45%|█████████████████▊ | 554/1240 [00:31<00:40, 17.10it/s]\u001b[A\n",
" 45%|█████████████████▉ | 556/1240 [00:32<00:43, 15.56it/s]\u001b[A\n",
" 45%|██████████████████ | 558/1240 [00:32<00:42, 16.15it/s]\u001b[A\n",
" 45%|██████████████████ | 560/1240 [00:32<00:45, 15.10it/s]\u001b[A\n",
" 45%|██████████████████▏ | 562/1240 [00:32<00:46, 14.70it/s]\u001b[A\n",
" 45%|██████████████████▏ | 564/1240 [00:32<00:48, 13.93it/s]\u001b[A\n",
" 46%|██████████████████▎ | 566/1240 [00:32<00:47, 14.18it/s]\u001b[A\n",
" 46%|██████████████████▎ | 568/1240 [00:32<00:47, 14.23it/s]\u001b[A\n",
" 46%|██████████████████▍ | 570/1240 [00:33<00:46, 14.48it/s]\u001b[A\n",
" 46%|██████████████████▍ | 572/1240 [00:33<00:47, 14.04it/s]\u001b[A\n",
" 46%|██████████████████▌ | 574/1240 [00:33<00:44, 14.92it/s]\u001b[A\n",
" 46%|██████████████████▌ | 576/1240 [00:33<00:45, 14.68it/s]\u001b[A\n",
" 47%|██████████████████▋ | 578/1240 [00:33<00:43, 15.23it/s]\u001b[A\n",
" 47%|██████████████████▋ | 580/1240 [00:33<00:45, 14.58it/s]\u001b[A\n",
" 47%|██████████████████▊ | 582/1240 [00:33<00:43, 15.13it/s]\u001b[A\n",
" 47%|██████████████████▊ | 584/1240 [00:33<00:43, 15.17it/s]\u001b[A\n",
" 47%|██████████████████▉ | 586/1240 [00:34<00:41, 15.86it/s]\u001b[A\n",
" 47%|██████████████████▉ | 588/1240 [00:34<00:41, 15.84it/s]\u001b[A\n",
" 48%|███████████████████ | 590/1240 [00:34<00:45, 14.28it/s]\u001b[A\n",
" 48%|███████████████████ | 592/1240 [00:34<00:41, 15.53it/s]\u001b[A\n",
" 48%|███████████████████▏ | 594/1240 [00:34<00:40, 16.02it/s]\u001b[A\n",
" 48%|███████████████████▏ | 596/1240 [00:34<00:40, 15.75it/s]\u001b[A\n",
" 48%|███████████████████▎ | 598/1240 [00:34<00:38, 16.52it/s]\u001b[A\n",
" 48%|███████████████████▎ | 600/1240 [00:34<00:39, 16.04it/s]\u001b[A\n",
" 49%|███████████████████▍ | 602/1240 [00:35<00:38, 16.47it/s]\u001b[A\n",
" 49%|███████████████████▌ | 605/1240 [00:35<00:33, 18.90it/s]\u001b[A\n",
" 49%|███████████████████▌ | 607/1240 [00:35<00:34, 18.26it/s]\u001b[A\n",
" 49%|███████████████████▋ | 609/1240 [00:35<00:34, 18.03it/s]\u001b[A\n",
" 49%|███████████████████▋ | 611/1240 [00:35<00:34, 18.25it/s]\u001b[A\n",
" 49%|███████████████████▊ | 613/1240 [00:35<00:35, 17.68it/s]\u001b[A\n",
" 50%|███████████████████▊ | 615/1240 [00:35<00:34, 18.06it/s]\u001b[A\n",
" 50%|███████████████████▉ | 617/1240 [00:35<00:35, 17.41it/s]\u001b[A\n",
" 50%|████████████████████ | 620/1240 [00:36<00:32, 19.14it/s]\u001b[A\n",
" 50%|████████████████████ | 623/1240 [00:36<00:31, 19.80it/s]\u001b[A\n",
" 50%|████████████████████▏ | 626/1240 [00:36<00:30, 20.25it/s]\u001b[A\n",
" 51%|████████████████████▎ | 629/1240 [00:36<00:29, 20.68it/s]\u001b[A\n",
" 51%|████████████████████▍ | 632/1240 [00:36<00:29, 20.37it/s]\u001b[A\n",
" 51%|████████████████████▍ | 635/1240 [00:36<00:28, 20.96it/s]\u001b[A\n",
" 51%|████████████████████▌ | 638/1240 [00:36<00:27, 21.93it/s]\u001b[A\n",
" 52%|████████████████████▋ | 641/1240 [00:37<00:28, 21.28it/s]\u001b[A\n",
" 52%|████████████████████▊ | 644/1240 [00:37<00:29, 20.30it/s]\u001b[A\n",
" 52%|████████████████████▊ | 647/1240 [00:37<00:32, 18.29it/s]\u001b[A\n",
" 52%|████████████████████▉ | 649/1240 [00:37<00:35, 16.84it/s]\u001b[A\n",
" 52%|█████████████████████ | 651/1240 [00:37<00:37, 15.70it/s]\u001b[A\n",
" 53%|█████████████████████ | 653/1240 [00:37<00:37, 15.70it/s]\u001b[A\n",
" 53%|█████████████████████▏ | 656/1240 [00:37<00:34, 16.94it/s]\u001b[A\n",
" 53%|█████████████████████▏ | 658/1240 [00:38<00:34, 17.12it/s]\u001b[A\n",
" 53%|█████████████████████▎ | 660/1240 [00:38<00:35, 16.41it/s]\u001b[A\n",
" 53%|█████████████████████▎ | 662/1240 [00:38<00:34, 16.90it/s]\u001b[A\n",
" 54%|█████████████████████▍ | 664/1240 [00:38<00:34, 16.56it/s]\u001b[A\n",
" 54%|█████████████████████▍ | 666/1240 [00:38<00:34, 16.78it/s]\u001b[A\n",
" 54%|█████████████████████▌ | 669/1240 [00:38<00:31, 18.08it/s]\u001b[A\n",
" 54%|█████████████████████▋ | 671/1240 [00:38<00:31, 18.34it/s]\u001b[A\n",
" 54%|█████████████████████▋ | 674/1240 [00:38<00:29, 18.92it/s]\u001b[A\n",
" 55%|█████████████████████▊ | 676/1240 [00:39<00:30, 18.73it/s]\u001b[A\n",
" 55%|█████████████████████▊ | 678/1240 [00:39<00:29, 18.89it/s]\u001b[A\n",
" 55%|█████████████████████▉ | 680/1240 [00:39<00:29, 19.13it/s]\u001b[A\n",
" 55%|██████████████████████ | 683/1240 [00:39<00:29, 19.03it/s]\u001b[A\n",
" 55%|██████████████████████ | 685/1240 [00:39<00:29, 19.06it/s]\u001b[A\n",
" 55%|██████████████████████▏ | 688/1240 [00:39<00:28, 19.56it/s]\u001b[A\n",
" 56%|██████████████████████▎ | 690/1240 [00:39<00:28, 19.06it/s]\u001b[A\n",
" 56%|██████████████████████▎ | 693/1240 [00:39<00:29, 18.85it/s]\u001b[A\n",
" 56%|██████████████████████▍ | 695/1240 [00:40<00:29, 18.76it/s]\u001b[A\n",
" 56%|██████████████████████▍ | 697/1240 [00:40<00:29, 18.63it/s]\u001b[A\n",
" 56%|██████████████████████▌ | 700/1240 [00:40<00:28, 18.88it/s]\u001b[A\n",
" 57%|██████████████████████▋ | 702/1240 [00:40<00:28, 19.04it/s]\u001b[A\n",
" 57%|██████████████████████▋ | 704/1240 [00:40<00:28, 19.12it/s]\u001b[A\n",
" 57%|██████████████████████▊ | 707/1240 [00:40<00:27, 19.43it/s]\u001b[A\n",
" 57%|██████████████████████▊ | 709/1240 [00:40<00:27, 19.27it/s]\u001b[A\n",
" 57%|██████████████████████▉ | 712/1240 [00:40<00:26, 20.18it/s]\u001b[A\n",
" 58%|███████████████████████ | 715/1240 [00:41<00:26, 20.07it/s]\u001b[A\n",
" 58%|███████████████████████▏ | 718/1240 [00:41<00:27, 18.66it/s]\u001b[A\n",
" 58%|███████████████████████▎ | 721/1240 [00:41<00:27, 19.03it/s]\u001b[A\n",
" 58%|███████████████████████▎ | 724/1240 [00:41<00:26, 19.76it/s]\u001b[A\n",
" 59%|███████████████████████▍ | 727/1240 [00:41<00:24, 20.65it/s]\u001b[A\n",
" 59%|███████████████████████▌ | 730/1240 [00:41<00:26, 19.22it/s]\u001b[A\n",
" 59%|███████████████████████▌ | 732/1240 [00:41<00:26, 19.10it/s]\u001b[A\n",
" 59%|███████████████████████▋ | 734/1240 [00:42<00:27, 18.71it/s]\u001b[A\n",
" 59%|███████████████████████▊ | 737/1240 [00:42<00:25, 19.72it/s]\u001b[A\n",
" 60%|███████████████████████▊ | 739/1240 [00:42<00:25, 19.38it/s]\u001b[A\n",
" 60%|███████████████████████▉ | 741/1240 [00:42<00:26, 19.15it/s]\u001b[A\n",
" 60%|████████████████████████ | 744/1240 [00:42<00:25, 19.83it/s]\u001b[A\n",
" 60%|████████████████████████ | 746/1240 [00:42<00:25, 19.17it/s]\u001b[A\n",
" 60%|████████████████████████▏ | 748/1240 [00:42<00:26, 18.59it/s]\u001b[A\n",
" 60%|████████████████████████▏ | 750/1240 [00:42<00:27, 17.94it/s]\u001b[A\n",
" 61%|████████████████████████▎ | 752/1240 [00:43<00:27, 17.79it/s]\u001b[A\n",
" 61%|████████████████████████▎ | 755/1240 [00:43<00:25, 19.01it/s]\u001b[A\n",
" 61%|████████████████████████▍ | 757/1240 [00:43<00:26, 18.49it/s]\u001b[A\n",
" 61%|████████████████████████▍ | 759/1240 [00:43<00:26, 18.34it/s]\u001b[A\n",
" 61%|████████████████████████▌ | 761/1240 [00:43<00:25, 18.44it/s]\u001b[A\n",
" 62%|████████████████████████▌ | 763/1240 [00:43<00:25, 18.71it/s]\u001b[A\n",
" 62%|████████████████████████▋ | 766/1240 [00:43<00:24, 18.97it/s]\u001b[A\n",
" 62%|████████████████████████▊ | 769/1240 [00:43<00:23, 20.14it/s]\u001b[A\n",
" 62%|████████████████████████▉ | 772/1240 [00:44<00:23, 19.61it/s]\u001b[A\n",
" 62%|█████████████████████████ | 775/1240 [00:44<00:23, 19.48it/s]\u001b[A\n",
" 63%|█████████████████████████ | 778/1240 [00:44<00:23, 19.37it/s]\u001b[A\n",
" 63%|█████████████████████████▏ | 780/1240 [00:44<00:23, 19.47it/s]\u001b[A\n",
" 63%|█████████████████████████▏ | 782/1240 [00:44<00:23, 19.55it/s]\u001b[A\n",
" 63%|█████████████████████████▎ | 785/1240 [00:44<00:23, 19.50it/s]\u001b[A\n",
" 64%|█████████████████████████▍ | 788/1240 [00:44<00:22, 20.26it/s]\u001b[A\n",
" 64%|█████████████████████████▌ | 791/1240 [00:45<00:23, 19.26it/s]\u001b[A\n",
" 64%|█████████████████████████▌ | 794/1240 [00:45<00:22, 19.42it/s]\u001b[A\n",
" 64%|█████████████████████████▋ | 797/1240 [00:45<00:23, 19.20it/s]\u001b[A\n",
" 65%|█████████████████████████▊ | 800/1240 [00:45<00:22, 19.95it/s]\u001b[A\n",
" 65%|█████████████████████████▉ | 803/1240 [00:45<00:22, 19.59it/s]\u001b[A\n",
" 65%|█████████████████████████▉ | 805/1240 [00:45<00:22, 19.42it/s]\u001b[A\n",
" 65%|██████████████████████████ | 808/1240 [00:45<00:21, 19.67it/s]\u001b[A\n",
" 65%|██████████████████████████▏ | 810/1240 [00:46<00:23, 18.31it/s]\u001b[A\n",
" 66%|██████████████████████████▏ | 813/1240 [00:46<00:22, 19.17it/s]\u001b[A\n",
" 66%|██████████████████████████▎ | 815/1240 [00:46<00:23, 18.21it/s]\u001b[A\n",
" 66%|██████████████████████████▎ | 817/1240 [00:46<00:23, 18.11it/s]\u001b[A\n",
" 66%|██████████████████████████▍ | 820/1240 [00:46<00:21, 19.61it/s]\u001b[A\n",
" 66%|██████████████████████████▌ | 823/1240 [00:46<00:20, 20.06it/s]\u001b[A\n",
" 67%|██████████████████████████▌ | 825/1240 [00:46<00:21, 19.74it/s]\u001b[A\n",
" 67%|██████████████████████████▋ | 828/1240 [00:46<00:20, 20.16it/s]\u001b[A\n",
" 67%|██████████████████████████▊ | 831/1240 [00:47<00:21, 18.70it/s]\u001b[A\n",
" 67%|██████████████████████████▊ | 833/1240 [00:47<00:22, 18.30it/s]\u001b[A\n",
" 67%|██████████████████████████▉ | 835/1240 [00:47<00:22, 18.34it/s]\u001b[A\n",
" 68%|███████████████████████████ | 837/1240 [00:47<00:21, 18.62it/s]\u001b[A\n",
" 68%|███████████████████████████ | 840/1240 [00:47<00:21, 18.41it/s]\u001b[A\n",
" 68%|███████████████████████████▏ | 842/1240 [00:47<00:22, 17.79it/s]\u001b[A\n",
" 68%|███████████████████████████▎ | 845/1240 [00:47<00:20, 18.98it/s]\u001b[A\n",
" 68%|███████████████████████████▎ | 847/1240 [00:48<00:22, 17.19it/s]\u001b[A\n",
" 68%|███████████████████████████▍ | 849/1240 [00:48<00:23, 16.42it/s]\u001b[A\n",
" 69%|███████████████████████████▍ | 851/1240 [00:48<00:23, 16.48it/s]\u001b[A\n",
" 69%|███████████████████████████▌ | 853/1240 [00:48<00:23, 16.61it/s]\u001b[A\n",
" 69%|███████████████████████████▌ | 855/1240 [00:48<00:22, 17.06it/s]\u001b[A\n",
" 69%|███████████████████████████▋ | 857/1240 [00:48<00:22, 17.01it/s]\u001b[A\n",
" 69%|███████████████████████████▋ | 859/1240 [00:48<00:22, 17.07it/s]\u001b[A\n",
" 70%|███████████████████████████▊ | 862/1240 [00:48<00:21, 17.95it/s]\u001b[A\n",
" 70%|███████████████████████████▊ | 864/1240 [00:49<00:21, 17.66it/s]\u001b[A\n",
" 70%|███████████████████████████▉ | 867/1240 [00:49<00:19, 18.92it/s]\u001b[A\n",
" 70%|████████████████████████████ | 869/1240 [00:49<00:21, 16.98it/s]\u001b[A\n",
" 70%|████████████████████████████ | 871/1240 [00:49<00:23, 16.01it/s]\u001b[A\n",
" 70%|████████████████████████████▏ | 873/1240 [00:49<00:23, 15.93it/s]\u001b[A\n",
" 71%|████████████████████████████▏ | 875/1240 [00:49<00:22, 15.96it/s]\u001b[A\n",
" 71%|████████████████████████████▎ | 877/1240 [00:49<00:21, 16.81it/s]\u001b[A\n",
" 71%|████████████████████████████▍ | 880/1240 [00:50<00:21, 17.12it/s]\u001b[A\n",
" 71%|████████████████████████████▍ | 882/1240 [00:50<00:20, 17.71it/s]\u001b[A\n",
" 71%|████████████████████████████▌ | 884/1240 [00:50<00:20, 17.10it/s]\u001b[A\n",
" 71%|████████████████████████████▌ | 886/1240 [00:50<00:21, 16.77it/s]\u001b[A\n",
" 72%|████████████████████████████▋ | 889/1240 [00:50<00:20, 17.50it/s]\u001b[A\n",
" 72%|████████████████████████████▊ | 892/1240 [00:50<00:18, 18.32it/s]\u001b[A\n",
" 72%|████████████████████████████▊ | 895/1240 [00:50<00:17, 19.18it/s]\u001b[A\n",
" 72%|████████████████████████████▉ | 898/1240 [00:50<00:16, 20.20it/s]\u001b[A\n",
" 73%|█████████████████████████████ | 901/1240 [00:51<00:19, 17.72it/s]\u001b[A\n",
" 73%|█████████████████████████████▏ | 903/1240 [00:51<00:20, 16.56it/s]\u001b[A\n",
" 73%|█████████████████████████████▏ | 905/1240 [00:51<00:19, 16.99it/s]\u001b[A\n",
" 73%|█████████████████████████████▎ | 907/1240 [00:51<00:19, 16.94it/s]\u001b[A\n",
" 73%|█████████████████████████████▎ | 910/1240 [00:51<00:18, 18.13it/s]\u001b[A\n",
" 74%|█████████████████████████████▍ | 912/1240 [00:51<00:18, 18.19it/s]\u001b[A\n",
" 74%|█████████████████████████████▍ | 914/1240 [00:51<00:18, 18.04it/s]\u001b[A\n",
" 74%|█████████████████████████████▌ | 916/1240 [00:52<00:18, 17.13it/s]\u001b[A\n",
" 74%|█████████████████████████████▌ | 918/1240 [00:52<00:18, 17.41it/s]\u001b[A\n",
" 74%|█████████████████████████████▋ | 920/1240 [00:52<00:19, 16.79it/s]\u001b[A\n",
" 74%|█████████████████████████████▋ | 922/1240 [00:52<00:19, 16.35it/s]\u001b[A\n",
" 75%|█████████████████████████████▊ | 924/1240 [00:52<00:19, 15.84it/s]\u001b[A\n",
" 75%|█████████████████████████████▊ | 926/1240 [00:52<00:19, 15.94it/s]\u001b[A\n",
" 75%|█████████████████████████████▉ | 928/1240 [00:52<00:19, 15.85it/s]\u001b[A\n",
" 75%|██████████████████████████████ | 930/1240 [00:52<00:18, 16.70it/s]\u001b[A\n",
" 75%|██████████████████████████████ | 932/1240 [00:53<00:17, 17.37it/s]\u001b[A\n",
" 75%|██████████████████████████████▏ | 934/1240 [00:53<00:17, 17.46it/s]\u001b[A\n",
" 75%|██████████████████████████████▏ | 936/1240 [00:53<00:17, 17.77it/s]\u001b[A\n",
" 76%|██████████████████████████████▎ | 938/1240 [00:53<00:18, 16.00it/s]\u001b[A\n",
" 76%|██████████████████████████████▎ | 941/1240 [00:53<00:17, 17.52it/s]\u001b[A\n",
" 76%|██████████████████████████████▍ | 943/1240 [00:53<00:17, 17.15it/s]\u001b[A\n",
" 76%|██████████████████████████████▍ | 945/1240 [00:53<00:17, 17.07it/s]\u001b[A\n",
" 76%|██████████████████████████████▌ | 947/1240 [00:53<00:16, 17.57it/s]\u001b[A\n",
" 77%|██████████████████████████████▌ | 949/1240 [00:53<00:16, 17.79it/s]\u001b[A\n",
" 77%|██████████████████████████████▋ | 951/1240 [00:54<00:16, 17.04it/s]\u001b[A\n",
" 77%|██████████████████████████████▊ | 954/1240 [00:54<00:15, 18.28it/s]\u001b[A\n",
" 77%|██████████████████████████████▊ | 956/1240 [00:54<00:16, 17.15it/s]\u001b[A\n",
" 77%|██████████████████████████████▉ | 958/1240 [00:54<00:16, 17.40it/s]\u001b[A\n",
" 77%|██████████████████████████████▉ | 960/1240 [00:54<00:16, 17.13it/s]\u001b[A\n",
" 78%|███████████████████████████████ | 962/1240 [00:54<00:15, 17.61it/s]\u001b[A\n",
" 78%|███████████████████████████████ | 964/1240 [00:54<00:15, 17.36it/s]\u001b[A\n",
" 78%|███████████████████████████████▏ | 966/1240 [00:54<00:16, 17.12it/s]\u001b[A\n",
" 78%|███████████████████████████████▎ | 969/1240 [00:55<00:14, 18.17it/s]\u001b[A\n",
" 78%|███████████████████████████████▎ | 971/1240 [00:55<00:15, 17.58it/s]\u001b[A\n",
" 78%|███████████████████████████████▍ | 973/1240 [00:55<00:15, 17.04it/s]\u001b[A\n",
" 79%|███████████████████████████████▍ | 975/1240 [00:55<00:16, 16.47it/s]\u001b[A\n",
" 79%|███████████████████████████████▌ | 977/1240 [00:55<00:15, 16.71it/s]\u001b[A\n",
" 79%|███████████████████████████████▌ | 979/1240 [00:55<00:15, 16.35it/s]\u001b[A\n",
" 79%|███████████████████████████████▋ | 981/1240 [00:55<00:17, 14.56it/s]\u001b[A\n",
" 79%|███████████████████████████████▋ | 983/1240 [00:56<00:16, 15.42it/s]\u001b[A\n",
" 79%|███████████████████████████████▊ | 985/1240 [00:56<00:16, 15.35it/s]\u001b[A\n",
" 80%|███████████████████████████████▊ | 987/1240 [00:56<00:16, 15.62it/s]\u001b[A\n",
" 80%|███████████████████████████████▉ | 989/1240 [00:56<00:15, 15.84it/s]\u001b[A\n",
" 80%|███████████████████████████████▉ | 991/1240 [00:56<00:15, 16.34it/s]\u001b[A\n",
" 80%|████████████████████████████████ | 993/1240 [00:56<00:15, 15.67it/s]\u001b[A\n",
" 80%|████████████████████████████████ | 995/1240 [00:56<00:17, 14.33it/s]\u001b[A\n",
" 80%|████████████████████████████████▏ | 997/1240 [00:56<00:16, 14.76it/s]\u001b[A\n",
" 81%|████████████████████████████████▏ | 999/1240 [00:57<00:18, 13.32it/s]\u001b[A\n",
" 81%|███████████████████████████████▍ | 1001/1240 [00:57<00:19, 11.99it/s]\u001b[A\n",
" 81%|███████████████████████████████▌ | 1003/1240 [00:57<00:19, 12.24it/s]\u001b[A\n",
" 81%|███████████████████████████████▌ | 1005/1240 [00:57<00:18, 12.87it/s]\u001b[A\n",
" 81%|███████████████████████████████▋ | 1007/1240 [00:57<00:17, 13.39it/s]\u001b[A\n",
" 81%|███████████████████████████████▋ | 1009/1240 [00:57<00:17, 13.52it/s]\u001b[A\n",
" 82%|███████████████████████████████▊ | 1011/1240 [00:58<00:16, 13.96it/s]\u001b[A\n",
" 82%|███████████████████████████████▊ | 1013/1240 [00:58<00:16, 13.97it/s]\u001b[A\n",
" 82%|███████████████████████████████▉ | 1015/1240 [00:58<00:16, 13.94it/s]\u001b[A\n",
" 82%|███████████████████████████████▉ | 1017/1240 [00:58<00:15, 14.13it/s]\u001b[A\n",
" 82%|████████████████████████████████ | 1019/1240 [00:58<00:14, 15.34it/s]\u001b[A\n",
" 82%|████████████████████████████████ | 1021/1240 [00:58<00:13, 16.31it/s]\u001b[A\n",
" 82%|████████████████████████████████▏ | 1023/1240 [00:58<00:13, 16.55it/s]\u001b[A\n",
" 83%|████████████████████████████████▏ | 1025/1240 [00:58<00:12, 17.03it/s]\u001b[A\n",
" 83%|████████████████████████████████▎ | 1028/1240 [00:59<00:11, 18.44it/s]\u001b[A\n",
" 83%|████████████████████████████████▍ | 1030/1240 [00:59<00:11, 17.99it/s]\u001b[A\n",
" 83%|████████████████████████████████▍ | 1032/1240 [00:59<00:11, 17.79it/s]\u001b[A\n",
" 83%|████████████████████████████████▌ | 1034/1240 [00:59<00:11, 17.33it/s]\u001b[A\n",
" 84%|████████████████████████████████▌ | 1036/1240 [00:59<00:12, 16.87it/s]\u001b[A\n",
" 84%|████████████████████████████████▋ | 1038/1240 [00:59<00:11, 17.05it/s]\u001b[A\n",
" 84%|████████████████████████████████▋ | 1040/1240 [00:59<00:11, 17.14it/s]\u001b[A\n",
" 84%|████████████████████████████████▊ | 1042/1240 [00:59<00:11, 16.61it/s]\u001b[A\n",
" 84%|████████████████████████████████▊ | 1044/1240 [01:00<00:12, 16.06it/s]\u001b[A\n",
" 84%|████████████████████████████████▉ | 1046/1240 [01:00<00:12, 16.15it/s]\u001b[A\n",
" 85%|████████████████████████████████▉ | 1048/1240 [01:00<00:11, 16.35it/s]\u001b[A\n",
" 85%|█████████████████████████████████ | 1050/1240 [01:00<00:11, 16.08it/s]\u001b[A\n",
" 85%|█████████████████████████████████ | 1052/1240 [01:00<00:11, 16.41it/s]\u001b[A\n",
" 85%|█████████████████████████████████▏ | 1054/1240 [01:00<00:11, 15.89it/s]\u001b[A\n",
" 85%|█████████████████████████████████▏ | 1056/1240 [01:00<00:10, 16.79it/s]\u001b[A\n",
" 85%|█████████████████████████████████▎ | 1058/1240 [01:00<00:10, 17.09it/s]\u001b[A\n",
" 85%|█████████████████████████████████▎ | 1060/1240 [01:00<00:10, 16.64it/s]\u001b[A\n",
" 86%|█████████████████████████████████▍ | 1062/1240 [01:01<00:10, 16.93it/s]\u001b[A\n",
" 86%|█████████████████████████████████▍ | 1064/1240 [01:01<00:10, 16.54it/s]\u001b[A\n",
" 86%|█████████████████████████████████▌ | 1066/1240 [01:01<00:10, 16.05it/s]\u001b[A\n",
" 86%|█████████████████████████████████▌ | 1068/1240 [01:01<00:10, 16.37it/s]\u001b[A\n",
" 86%|█████████████████████████████████▋ | 1070/1240 [01:01<00:09, 17.07it/s]\u001b[A\n",
" 86%|█████████████████████████████████▋ | 1072/1240 [01:01<00:10, 16.38it/s]\u001b[A\n",
" 87%|█████████████████████████████████▊ | 1075/1240 [01:01<00:09, 17.34it/s]\u001b[A\n",
" 87%|█████████████████████████████████▊ | 1077/1240 [01:02<00:09, 16.91it/s]\u001b[A\n",
" 87%|█████████████████████████████████▉ | 1080/1240 [01:02<00:09, 17.04it/s]\u001b[A\n",
" 87%|██████████████████████████████████ | 1082/1240 [01:02<00:09, 16.63it/s]\u001b[A\n",
" 87%|██████████████████████████████████ | 1084/1240 [01:02<00:09, 16.64it/s]\u001b[A\n",
" 88%|██████████████████████████████████▏ | 1086/1240 [01:02<00:09, 16.87it/s]\u001b[A\n",
" 88%|██████████████████████████████████▏ | 1088/1240 [01:02<00:09, 16.82it/s]\u001b[A\n",
" 88%|██████████████████████████████████▎ | 1090/1240 [01:02<00:08, 16.85it/s]\u001b[A\n",
" 88%|██████████████████████████████████▎ | 1092/1240 [01:02<00:09, 16.31it/s]\u001b[A\n",
" 88%|██████████████████████████████████▍ | 1095/1240 [01:03<00:08, 17.04it/s]\u001b[A\n",
" 88%|██████████████████████████████████▌ | 1097/1240 [01:03<00:08, 16.99it/s]\u001b[A\n",
" 89%|██████████████████████████████████▌ | 1099/1240 [01:03<00:08, 17.49it/s]\u001b[A\n",
" 89%|██████████████████████████████████▋ | 1101/1240 [01:03<00:08, 16.40it/s]\u001b[A\n",
" 89%|██████████████████████████████████▋ | 1103/1240 [01:03<00:08, 16.72it/s]\u001b[A\n",
" 89%|██████████████████████████████████▊ | 1105/1240 [01:03<00:08, 16.59it/s]\u001b[A\n",
" 89%|██████████████████████████████████▊ | 1107/1240 [01:03<00:07, 17.39it/s]\u001b[A\n",
" 89%|██████████████████████████████████▉ | 1109/1240 [01:03<00:07, 16.69it/s]\u001b[A\n",
" 90%|██████████████████████████████████▉ | 1111/1240 [01:04<00:07, 16.78it/s]\u001b[A\n",
" 90%|███████████████████████████████████ | 1113/1240 [01:04<00:07, 16.52it/s]\u001b[A\n",
" 90%|███████████████████████████████████ | 1116/1240 [01:04<00:06, 17.97it/s]\u001b[A\n",
" 90%|███████████████████████████████████▏ | 1118/1240 [01:04<00:06, 18.34it/s]\u001b[A\n",
" 90%|███████████████████████████████████▏ | 1120/1240 [01:04<00:06, 18.27it/s]\u001b[A\n",
" 90%|███████████████████████████████████▎ | 1122/1240 [01:04<00:06, 17.40it/s]\u001b[A\n",
" 91%|███████████████████████████████████▎ | 1124/1240 [01:04<00:06, 18.04it/s]\u001b[A\n",
" 91%|███████████████████████████████████▍ | 1126/1240 [01:04<00:06, 18.23it/s]\u001b[A\n",
" 91%|███████████████████████████████████▍ | 1128/1240 [01:04<00:06, 17.70it/s]\u001b[A\n",
" 91%|███████████████████████████████████▌ | 1130/1240 [01:05<00:06, 17.27it/s]\u001b[A\n",
" 91%|███████████████████████████████████▌ | 1132/1240 [01:05<00:06, 17.60it/s]\u001b[A\n",
" 91%|███████████████████████████████████▋ | 1134/1240 [01:05<00:06, 17.34it/s]\u001b[A\n",
" 92%|███████████████████████████████████▋ | 1136/1240 [01:05<00:06, 17.20it/s]\u001b[A\n",
" 92%|███████████████████████████████████▊ | 1138/1240 [01:05<00:05, 17.91it/s]\u001b[A\n",
" 92%|███████████████████████████████████▊ | 1140/1240 [01:05<00:05, 16.85it/s]\u001b[A\n",
" 92%|███████████████████████████████████▉ | 1142/1240 [01:05<00:06, 15.82it/s]\u001b[A\n",
" 92%|███████████████████████████████████▉ | 1144/1240 [01:05<00:06, 15.94it/s]\u001b[A\n",
" 92%|████████████████████████████████████ | 1146/1240 [01:06<00:05, 16.44it/s]\u001b[A\n",
" 93%|████████████████████████████████████ | 1148/1240 [01:06<00:05, 17.30it/s]\u001b[A\n",
" 93%|████████████████████████████████████▏ | 1150/1240 [01:06<00:05, 17.74it/s]\u001b[A\n",
" 93%|████████████████████████████████████▏ | 1152/1240 [01:06<00:04, 17.78it/s]\u001b[A\n",
" 93%|████████████████████████████████████▎ | 1154/1240 [01:06<00:05, 16.69it/s]\u001b[A\n",
" 93%|████████████████████████████████████▎ | 1156/1240 [01:06<00:05, 16.75it/s]\u001b[A\n",
" 93%|████████████████████████████████████▍ | 1158/1240 [01:06<00:04, 16.81it/s]\u001b[A\n",
" 94%|████████████████████████████████████▍ | 1160/1240 [01:06<00:04, 16.29it/s]\u001b[A\n",
" 94%|████████████████████████████████████▌ | 1162/1240 [01:06<00:04, 16.56it/s]\u001b[A\n",
" 94%|████████████████████████████████████▌ | 1164/1240 [01:07<00:04, 16.89it/s]\u001b[A\n",
" 94%|████████████████████████████████████▋ | 1166/1240 [01:07<00:04, 16.40it/s]\u001b[A\n",
" 94%|████████████████████████████████████▋ | 1168/1240 [01:07<00:04, 16.48it/s]\u001b[A\n",
" 94%|████████████████████████████████████▊ | 1170/1240 [01:07<00:04, 17.22it/s]\u001b[A\n",
" 95%|████████████████████████████████████▊ | 1172/1240 [01:07<00:04, 16.74it/s]\u001b[A\n",
" 95%|████████████████████████████████████▉ | 1174/1240 [01:07<00:03, 17.50it/s]\u001b[A\n",
" 95%|████████████████████████████████████▉ | 1176/1240 [01:07<00:03, 16.06it/s]\u001b[A\n",
" 95%|█████████████████████████████████████ | 1178/1240 [01:07<00:03, 16.89it/s]\u001b[A\n",
" 95%|█████████████████████████████████████ | 1180/1240 [01:08<00:03, 17.26it/s]\u001b[A\n",
" 95%|█████████████████████████████████████▏ | 1182/1240 [01:08<00:03, 17.32it/s]\u001b[A\n",
" 95%|█████████████████████████████████████▏ | 1184/1240 [01:08<00:03, 17.75it/s]\u001b[A\n",
" 96%|█████████████████████████████████████▎ | 1186/1240 [01:08<00:03, 17.30it/s]\u001b[A\n",
" 96%|█████████████████████████████████████▍ | 1189/1240 [01:08<00:02, 18.80it/s]\u001b[A\n",
" 96%|█████████████████████████████████████▍ | 1192/1240 [01:08<00:02, 19.33it/s]\u001b[A\n",
" 96%|█████████████████████████████████████▌ | 1194/1240 [01:08<00:02, 18.52it/s]\u001b[A\n",
" 96%|█████████████████████████████████████▌ | 1196/1240 [01:08<00:02, 18.57it/s]\u001b[A\n",
" 97%|█████████████████████████████████████▋ | 1198/1240 [01:09<00:02, 17.57it/s]\u001b[A\n",
" 97%|█████████████████████████████████████▊ | 1201/1240 [01:09<00:02, 18.32it/s]\u001b[A\n",
" 97%|█████████████████████████████████████▊ | 1203/1240 [01:09<00:02, 18.02it/s]\u001b[A\n",
" 97%|█████████████████████████████████████▉ | 1205/1240 [01:09<00:01, 18.38it/s]\u001b[A\n",
" 97%|█████████████████████████████████████▉ | 1208/1240 [01:09<00:01, 19.45it/s]\u001b[A\n",
" 98%|██████████████████████████████████████ | 1210/1240 [01:09<00:01, 18.34it/s]\u001b[A\n",
" 98%|██████████████████████████████████████ | 1212/1240 [01:09<00:01, 17.31it/s]\u001b[A\n",
" 98%|██████████████████████████████████████▏| 1214/1240 [01:09<00:01, 17.97it/s]\u001b[A\n",
" 98%|██████████████████████████████████████▏| 1216/1240 [01:10<00:01, 17.21it/s]\u001b[A\n",
" 98%|██████████████████████████████████████▎| 1218/1240 [01:10<00:01, 16.67it/s]\u001b[A\n",
" 98%|██████████████████████████████████████▎| 1220/1240 [01:10<00:01, 16.62it/s]\u001b[A\n",
" 99%|██████████████████████████████████████▍| 1222/1240 [01:10<00:01, 16.87it/s]\u001b[A\n",
" 99%|██████████████████████████████████████▍| 1224/1240 [01:10<00:00, 17.65it/s]\u001b[A\n",
" 99%|██████████████████████████████████████▌| 1226/1240 [01:10<00:00, 18.04it/s]\u001b[A\n",
" 99%|██████████████████████████████████████▌| 1228/1240 [01:10<00:00, 18.41it/s]\u001b[A\n",
" 99%|██████████████████████████████████████▋| 1231/1240 [01:10<00:00, 18.95it/s]\u001b[A\n",
" 99%|██████████████████████████████████████▊| 1233/1240 [01:10<00:00, 18.09it/s]\u001b[A\n",
"100%|██████████████████████████████████████▊| 1235/1240 [01:11<00:00, 18.58it/s]\u001b[A\n",
"100%|██████████████████████████████████████▉| 1237/1240 [01:11<00:00, 18.52it/s]\u001b[A\n",
" \u001b[A\n",
" 20%|██████▋ | 2000/10080 [1:06:44<5:02:13, 2.24s/it]\n",
"100%|███████████████████████████████████████| 1240/1240 [01:12<00:00, 18.30it/s]\u001b[A\n",
" \u001b[ASaving model checkpoint to ./wav2vec2-large-xls-r-300m-romansh-sursilvan/checkpoint-2000\n",
"Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-sursilvan/checkpoint-2000/config.json\n",
"Model weights saved in ./wav2vec2-large-xls-r-300m-romansh-sursilvan/checkpoint-2000/pytorch_model.bin\n",
"Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-sursilvan/checkpoint-2000/preprocessor_config.json\n",
"Configuration saved in ./wav2vec2-large-xls-r-300m-romansh-sursilvan/preprocessor_config.json\n",
" 30%|██████████ | 3000/10080 [1:40:00<2:28:58, 1.26s/it]"
]
}
],
"source": [
"!python run_speech_recognition_ctc.py \\\n",
"\t--dataset_name=\"mozilla-foundation/common_voice_7_0\" \\\n",
"\t--model_name_or_path=\"facebook/wav2vec2-xls-r-300m\" \\\n",
"\t--dataset_config_name=\"rm-sursilv\" \\\n",
"\t--output_dir=\"./wav2vec2-large-xls-r-300m-romansh-sursilvan\" \\\n",
"\t--overwrite_output_dir \\\n",
"\t--num_train_epochs=\"120\" \\\n",
"\t--per_device_train_batch_size=\"32\" \\\n",
"\t--per_device_eval_batch_size=\"1\" \\\n",
"\t--gradient_accumulation_steps=\"1\" \\\n",
"\t--learning_rate=\"7e-5\" \\\n",
"\t--warmup_steps=\"2000\" \\\n",
"\t--length_column_name=\"input_length\" \\\n",
"\t--evaluation_strategy=\"steps\" \\\n",
"\t--text_column_name=\"sentence\" \\\n",
"\t--chars_to_ignore , ? . ! \\- \\; \\: \\\" “ % ‘ ” � — ’ … – \\' \\\n",
"\t--save_steps=\"2000\" \\\n",
"\t--eval_steps=\"2000\" \\\n",
"\t--logging_steps=\"100\" \\\n",
"\t--layerdrop=\"0.0\" \\\n",
"\t--activation_dropout=\"0.1\" \\\n",
"\t--save_total_limit=\"2\" \\\n",
"\t--freeze_feature_encoder \\\n",
"\t--feat_proj_dropout=\"0.0\" \\\n",
"\t--mask_time_prob=\"0.75\" \\\n",
"\t--mask_time_length=\"10\" \\\n",
"\t--mask_feature_prob=\"0.25\" \\\n",
"\t--mask_feature_length=\"64\" \\\n",
"\t--gradient_checkpointing \\\n",
"\t--use_auth_token \\\n",
"\t--fp16 \\\n",
"\t--group_by_length \\\n",
"\t--do_train --do_eval \\\n",
" --push_to_hub > out.log"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "0zBb4QMVcSeV"
},
"outputs": [],
"source": [
"# !rm -rf wav2vec2-large-xls-r-300m-bashkir"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jxvhTTQ2cSeV"
},
"outputs": [],
"source": [
"!ls -ltr"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "okCO9-XTcSeV",
"outputId": "a47bb25e-904a-4c1e-8871-d996a16b6bcc"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Filesystem Size Used Avail Use% Mounted on\n",
"overlay 3.5T 1.2T 2.2T 34% /\n",
"tmpfs 64M 0 64M 0% /dev\n",
"tmpfs 87G 0 87G 0% /sys/fs/cgroup\n",
"tmpfs 87G 0 87G 0% /dev/shm\n",
"/dev/md0 3.5T 1.2T 2.2T 34% /etc/group\n",
"tmpfs 87G 12K 87G 1% /proc/driver/nvidia\n",
"/dev/vda1 49G 6.5G 42G 14% /usr/bin/nvidia-smi\n",
"udev 87G 0 87G 0% /dev/nvidia0\n",
"tmpfs 87G 0 87G 0% /proc/acpi\n",
"tmpfs 87G 0 87G 0% /proc/scsi\n",
"tmpfs 87G 0 87G 0% /sys/firmware\n"
]
}
],
"source": [
"!df -h"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "axSDvjOMdkxW"
},
"outputs": [],
"source": [
"# !pip install -U datasets"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 238,
"referenced_widgets": [
"7c34d36b28e54989b0c509eae1bd9a0f",
"eba629a92467433c92840e4450e7a937",
"cf1afb1025d24c1cbbb1eefd26535a26",
"f347c0838adf462d886a4ae36a3a6b41",
"37bdb17bf4734fd4b92759c874a4d4b8",
"4685ef4f82764fada48035b4de9af9e2",
"aab799184cf8453e9cf026a32abff619",
"1795d07714684311b1ccea7514f298e4",
"7fa8f65c508e4e629b1a2212aaa64ebc",
"c139ed75ff4d47d593f8cb5f3fa4c105",
"776dc15d8836456281084dc154d769e4",
"f3a862eb1219484b8d9381fb0d16b063",
"da3f94cc1140466cbcbdb3e03cbea8c2",
"2fedf1edcc184d9b8c67712511f8bfef",
"25142b9649ef403c8b37cdb7f9a8de4b",
"8f5cd0e3111241b8a61914dac82acf73",
"7340567ea42d42709f8099a249f6b5dd",
"7365cf85ddff4b26a27c9b797c573949",
"2fbc062ac19f4eb7a8adff2a5118bea4",
"ae5b0f9f37e44e8e965f7e20dfdf3bfa",
"24aeaf260d2240d08466c5e3a01d95cb",
"06ec543be0a34943959c3140119c4d6e",
"311cbd6bf6df4c35b7819e49fb55a562",
"3bc2760daaa346b2b20d76d6cf4ed336",
"c4b226675ad84ff29f62847767065469",
"0be3f91b1071464d979c0c59baff32f4",
"7c4a653d81474818b084b71657f71e0f",
"cb10ec01c16a4c50bf8e4c8aec491aa2",
"ec67f65de50b4038ac3b01496ef56f98",
"4b2562825d8e4c5484008cd054e01216",
"209d975f5d4e4300bf01bb6b2472d493",
"690f71c3c232421c8cd92a28b5435b55",
"4f4d422bdd49486c940713c19e754479",
"e5d1a213afc04270926da41e12b30362",
"30afb513746845b481227b3191df4c90",
"c7017ddc94104c27b42658f27f275908",
"155de8f44ddf4021a5d1d4d4968934db",
"cb3b32862a12486f8625d667bb45c368",
"832b4fcaf152402e84bfdaf9833d061f",
"8af6a305cc8a4a038f74f39e6ea8f040",
"4c316c3eddd64af1b4d892516e1ced03",
"efd0fc9b3766457484533a6eb59f2cd4",
"27d72d36fe604e5d96d6a979ed6d50ee",
"f90669ec059249ca81a0e2c5891834db",
"67d3fcb0869a4485b24846d3b1e34fca",
"3db73d64f4e54cad8f8cd0f5facc33c0",
"d434124da4654ada92573070353dbce1",
"3c36f662c44e453ca935753e6dc18060",
"0d0ab06d275d49f5b1ac57b28c53c158",
"61771b0bdfe543b88fc8673a510a986c",
"63d4b794d9df49c6ab6f77f10a76861d",
"42bb543380e14d859f42e966b3c54bc2",
"00a1878e3cda42e1982093e185935937",
"9cce7704e9e74588aa7aa3b9ddf9672f",
"a27c1dd0b5c447058bf8abde274d7085",
"1ee70ac9891d4104ad801f75b4081c9f",
"eda7343054624f4d8a2e2b981b4fab41",
"f56579df97b94a5a8b3a0fbf32905687",
"aee17658cd4b4fe49a759ad6c9d5a576",
"3a6e34083c8f4066a6718c957958cfa6",
"8148f4330d0f441998d9a3ca4942bc22",
"9ea974dfe1184fe3897a7d9d031c7624",
"a968de55d2e148f88084ac96444c17ee",
"c0aeab2086de4ca7ad8b5f0bbcde009c",
"05d04f345a3148dd9053a5d524592333",
"7a68ba6f90a24162a973ba5146c2f546",
"a4411af1dda24dec9b863793ccd22390",
"f085643a56b94b74bb7e883598170f01",
"ee8a677f68a147e5b10a35518616e264",
"315ae5446f264660bbe6119e8261495d",
"64b970adf3af40268fb60e38140157e2",
"2ac4df7918404aed92611750471cd85f",
"7bf164fec94c40858cf5280937f8e00a",
"0e1672eeb5244df9bf0cbd095625d68a",
"ee80362b77ef4375bb931af34bc16d07",
"fed5fdea500f46618789c44aef2bff3b",
"f49c5c9c58ee482a8264e422d4610a8a",
"6a9e0e280ef7493eb4557429d6f53685",
"c51fb67419ed47f98c5ed4ad4e33aeff",
"2de6d3927c534397ab122a9cf6332a33",
"f3891dcc62b74ccd8d5a61b0ca761b2a",
"9958cd546fbe477092527a14bb3bfe21",
"639f180d5e02425dba7d4c4bca07c59b",
"4da0d9054bd74fb2a77bb40371c99a7b",
"3f8a5e226fbf4175b4fa7f39a2a9d290",
"41515b22976648aabe660b8df3506c4c",
"b2a72b0caf104aee8dd95bff01cc52a4",
"6b8769a26838449e9d7d45fc5cc7a6f6",
"50862512d9c14dbd92f8cc3d795d4cd2",
"352fc0a527024af8a284c53f4d521fec",
"67653ac95966464994b1e0a889cfc5d9",
"778d0a9a7de243eba8dd1c0caf3aa82e",
"14eb779636914797867b7315f347839d",
"25a5802292874e49bb42a1489ff54b31",
"89a05d4149534d78935e169c6623f458",
"49f46100f43346d2bdb402e2fd1a1951",
"5e2e7ad6aa8f4f51adf7f6376b84f618",
"2e918f153be0489dbf0ad64bc45c563c",
"c319fa946f3e4380864aed6d3fbb77e7"
]
},
"id": "82uZWUF_cSeW",
"outputId": "e78215f2-d452-4d92-a94c-0a469f8760d4"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading and preparing dataset common_voice/rm-sursilv to /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/rm-sursilv/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b...\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fd10a268a68f4da6bf049ef5cc0220d0",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Downloading: 0%| | 0.00/282M [00:00, ?B/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"0 examples [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"0 examples [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"0 examples [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"0 examples [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"0 examples [00:00, ? examples/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Dataset common_voice downloaded and prepared to /workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/rm-sursilv/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b. Subsequent calls will reuse this data.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Reusing dataset common_voice (/workspace/.cache/huggingface/datasets/mozilla-foundation___common_voice/rm-sursilv/7.0.0/fe20cac47c166e25b1f096ab661832e3da7cf298ed4a91dcaa1343ad972d175b)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"2675\n"
]
}
],
"source": [
"from datasets import load_dataset, load_metric, Audio\n",
"\n",
"common_voice_train = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"rm-sursilv\", use_auth_token=True, split=\"train+validation\")\n",
"common_voice_test = load_dataset(\"mozilla-foundation/common_voice_7_0\", \"rm-sursilv\", use_auth_token=True, split=\"test\")\n",
"\n",
"print(len(common_voice_train))"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "1Qa9wKa4cSeW",
"outputId": "da721286-89ac-421c-a269-e779449488c6"
},
"outputs": [
{
"data": {
"text/plain": [
"Dataset({\n",
" features: ['client_id', 'path', 'audio', 'sentence', 'up_votes', 'down_votes', 'age', 'gender', 'accent', 'locale', 'segment'],\n",
" num_rows: 2675\n",
"})"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"common_voice_train"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "H_KRIMbEcSeX",
"outputId": "90601843-d465-4cd3-dff0-9d2302e02699"
},
"outputs": [
{
"data": {
"text/plain": [
"10031.25"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(common_voice_train) * 120 / 32"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"id": "ZUc_UAMbcSeX"
},
"outputs": [],
"source": [
"common_voice_train = common_voice_train.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\"])\n",
"common_voice_test = common_voice_test.remove_columns([\"accent\", \"age\", \"client_id\", \"down_votes\", \"gender\", \"locale\", \"segment\", \"up_votes\"])"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"id": "OKxWKzjMcSeX"
},
"outputs": [],
"source": [
"from datasets import ClassLabel\n",
"import random\n",
"import pandas as pd\n",
"from IPython.display import display, HTML\n",
"\n",
"def show_random_elements(dataset, num_examples=10):\n",
" assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
" picks = []\n",
" for _ in range(num_examples):\n",
" pick = random.randint(0, len(dataset)-1)\n",
" while pick in picks:\n",
" pick = random.randint(0, len(dataset)-1)\n",
" picks.append(pick)\n",
" \n",
" df = pd.DataFrame(dataset[picks])\n",
" display(HTML(df.to_html()))"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "uR3e--0AcSeY",
"outputId": "efb84606-2717-4040-ca02-86975a2f4824"
},
"outputs": [
{
"data": {
"text/html": [
"
\n", " | sentence | \n", "
---|---|
0 | \n", "Meinsvart gronds sco pulits vadials. | \n", "
1 | \n", "Tochen primavera sundel jeu eligius sco mistral e cheu dat ei nuot da marcadar. | \n", "
2 | \n", "El vegn a restar. | \n", "
3 | \n", "Meins aultas ein las frequenzas tier ils films dils carschi stadas. | \n", "
4 | \n", "Ses egls eran tut cotschens dil bargir. | \n", "
5 | \n", "La veta d’ina battaria cuoza entuorn quater onns. | \n", "
6 | \n", "La distribuziun fina el Grischun viva dalla glieud che va ellas apotecas dalla regiun. | \n", "
7 | \n", "Dalla vart dils umens eran las largias pli grondas. | \n", "
8 | \n", "Gia biars han empruau ei, mo negin ei puspei turnaus a casa. | \n", "
9 | \n", "Miu bab ha capiu da svegliar en mei l’amur per nies lungatg romontsch. | \n", "