from transformers import AutoModelForCausalLM, AutoTokenizer, StopStringCriteria, StoppingCriteriaList import torch # Load the tokenizer and model repo_name = "nvidia/Hymba-1.5B-Instruct" tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True) model = model.cuda().to(torch.bfloat16) # Chat with Hymba prompt = input() messages = [ {"role": "system", "content": "You are a helpful assistant."} ] messages.append({"role": "user", "content": prompt}) # Apply chat template tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda') stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="")]) outputs = model.generate( tokenized_chat, max_new_tokens=256, do_sample=False, temperature=0.7, use_cache=True, stopping_criteria=stopping_criteria ) input_length = tokenized_chat.shape[1] response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True) print(f"Model response: {response}")