--- base_model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit language: - en license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - llama - trl - sft datasets: - yahma/alpaca-cleaned --- # 🍷 Llama-3.2-3B-Instruct-Alpaca This is a finetune of [meta-llama/Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct). It was trained on the [yahma/alpaca-cleaned](https://huggingface.co/datasets/yahma/alpaca-cleaned) dataset using Unsloth. This was my first fine tune and it's not done the best, but it is usable for small applications. ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "itsnebulalol/Llama-3.2-3B-Instruct-Alpaca" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` --- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)