--- library_name: transformers license: mit base_model: DTAI-KULeuven/robbert-2023-dutch-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: robbert-2023-dutch-large-topic_classification results: [] --- # robbert-2023-dutch-large-topic_classification This model is a fine-tuned version of [DTAI-KULeuven/robbert-2023-dutch-large](https://huggingface.co/DTAI-KULeuven/robbert-2023-dutch-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7479 - Precision: 0.9198 - Recall: 0.9008 - F1: 0.9082 - Accuracy: 0.9118 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 88 | 0.7486 | 0.8471 | 0.8101 | 0.8223 | 0.8333 | | No log | 2.0 | 176 | 0.7488 | 0.8557 | 0.7525 | 0.7800 | 0.8137 | | No log | 3.0 | 264 | 0.9650 | 0.8507 | 0.8430 | 0.8347 | 0.8284 | | No log | 4.0 | 352 | 0.7878 | 0.8982 | 0.8472 | 0.8650 | 0.8775 | | No log | 5.0 | 440 | 0.8113 | 0.9254 | 0.8876 | 0.9020 | 0.9020 | | 0.5488 | 6.0 | 528 | 0.8695 | 0.9070 | 0.8858 | 0.8936 | 0.8971 | | 0.5488 | 7.0 | 616 | 0.7924 | 0.9174 | 0.8886 | 0.8983 | 0.9020 | | 0.5488 | 8.0 | 704 | 0.6974 | 0.9198 | 0.9008 | 0.9082 | 0.9118 | | 0.5488 | 9.0 | 792 | 0.7410 | 0.9292 | 0.9065 | 0.9148 | 0.9167 | | 0.5488 | 10.0 | 880 | 0.7479 | 0.9198 | 0.9008 | 0.9082 | 0.9118 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1