--- base_model: ai-forever/ruBert-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: ruBert-large_ner results: [] --- # ruBert-large_ner This model is a fine-tuned version of [ai-forever/ruBert-large](https://huggingface.co/ai-forever/ruBert-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5158 - Precision: 0.8832 - Recall: 0.9014 - F1: 0.8912 - Accuracy: 0.9234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 438 | 0.3216 | 0.8700 | 0.8309 | 0.8448 | 0.8941 | | 0.3915 | 2.0 | 876 | 0.3379 | 0.8596 | 0.8790 | 0.8672 | 0.9089 | | 0.175 | 3.0 | 1314 | 0.3441 | 0.8656 | 0.8833 | 0.8737 | 0.9092 | | 0.0942 | 4.0 | 1752 | 0.3751 | 0.8651 | 0.8856 | 0.8729 | 0.9104 | | 0.0597 | 5.0 | 2190 | 0.3919 | 0.8881 | 0.9002 | 0.8935 | 0.9236 | | 0.0309 | 6.0 | 2628 | 0.4360 | 0.8730 | 0.8958 | 0.8821 | 0.9171 | | 0.0154 | 7.0 | 3066 | 0.4564 | 0.8848 | 0.8985 | 0.8907 | 0.9234 | | 0.0064 | 8.0 | 3504 | 0.4809 | 0.8797 | 0.9036 | 0.8904 | 0.9236 | | 0.0064 | 9.0 | 3942 | 0.5027 | 0.8832 | 0.9024 | 0.8917 | 0.9232 | | 0.0024 | 10.0 | 4380 | 0.5158 | 0.8832 | 0.9014 | 0.8912 | 0.9234 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1