--- library_name: transformers license: apache-2.0 base_model: t5-small tags: - generated_from_trainer metrics: - rouge model-index: - name: cnn_news_summary_model_trained_on_reduced_data results: [] --- # cnn_news_summary_model_trained_on_reduced_data This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an cnn_daily_mail dataset. It achieves the following results on the evaluation set: - Loss: 1.6040 - Rouge1: 0.2183 - Rouge2: 0.0946 - Rougel: 0.1843 - Rougelsum: 0.1842 - Generated Length: 19.0 ## Model Description The developers of the Text-To-Text Transfer Transformer (T5) [write](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html): > With T5, we propose reframing all NLP tasks into a unified text-to-text-format where the input and output are always text strings, in contrast to BERT-style models that can only output either a class label or a span of the input. Our text-to-text framework allows us to use the same model, loss function, and hyperparameters on any NLP task. T5-Small is the checkpoint with 60 million parameters. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Generated Length | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:----------------:| | No log | 1.0 | 431 | 1.6239 | 0.2171 | 0.0934 | 0.1827 | 0.1827 | 19.0 | | 1.9203 | 2.0 | 862 | 1.6075 | 0.2166 | 0.0937 | 0.1828 | 0.1827 | 19.0 | | 1.822 | 3.0 | 1293 | 1.6040 | 0.2183 | 0.0946 | 0.1843 | 0.1842 | 19.0 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Tokenizers 0.19.1