--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: whisper-small-ne-NP results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: ne-NP split: test args: ne-NP metrics: - name: Wer type: wer value: 57.38758029978587 --- # whisper-small-ne-NP This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6005 - Wer: 57.3876 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.9935 | 0.17 | 100 | 1.3460 | 91.4347 | | 0.6624 | 0.35 | 200 | 1.0307 | 85.6531 | | 0.5002 | 0.52 | 300 | 0.8406 | 77.5161 | | 0.4426 | 0.7 | 400 | 0.7038 | 76.2313 | | 0.3063 | 0.87 | 500 | 0.5308 | 71.5203 | | 0.1949 | 1.05 | 600 | 0.5200 | 66.1670 | | 0.1974 | 1.22 | 700 | 0.5140 | 65.0964 | | 0.1734 | 1.4 | 800 | 0.4423 | 67.6660 | | 0.1619 | 1.57 | 900 | 0.4705 | 62.0985 | | 0.1697 | 1.75 | 1000 | 0.4676 | 67.0236 | | 0.1536 | 1.92 | 1100 | 0.4441 | 62.7409 | | 0.0722 | 2.1 | 1200 | 0.4492 | 58.0300 | | 0.0674 | 2.27 | 1300 | 0.4597 | 59.9572 | | 0.0766 | 2.45 | 1400 | 0.4720 | 62.3126 | | 0.0732 | 2.62 | 1500 | 0.4720 | 60.5996 | | 0.0737 | 2.8 | 1600 | 0.4704 | 61.0278 | | 0.0833 | 2.97 | 1700 | 0.4711 | 59.7430 | | 0.0421 | 3.15 | 1800 | 0.5040 | 60.5996 | | 0.0444 | 3.32 | 1900 | 0.5096 | 62.5268 | | 0.0343 | 3.5 | 2000 | 0.5276 | 62.5268 | | 0.0347 | 3.67 | 2100 | 0.5068 | 57.3876 | | 0.0326 | 3.85 | 2200 | 0.5143 | 59.3148 | | 0.0219 | 4.02 | 2300 | 0.5225 | 59.3148 | | 0.0129 | 4.2 | 2400 | 0.5353 | 59.1006 | | 0.0159 | 4.37 | 2500 | 0.5639 | 56.9593 | | 0.0168 | 4.55 | 2600 | 0.5303 | 55.8887 | | 0.0131 | 4.72 | 2700 | 0.5455 | 58.6724 | | 0.0122 | 4.9 | 2800 | 0.5548 | 56.5310 | | 0.0035 | 5.07 | 2900 | 0.5661 | 56.7452 | | 0.0027 | 5.24 | 3000 | 0.5789 | 57.6017 | | 0.0034 | 5.42 | 3100 | 0.5887 | 59.1006 | | 0.0047 | 5.59 | 3200 | 0.5853 | 59.9572 | | 0.0054 | 5.77 | 3300 | 0.5912 | 58.4582 | | 0.0042 | 5.94 | 3400 | 0.5862 | 59.3148 | | 0.0013 | 6.12 | 3500 | 0.5935 | 56.7452 | | 0.001 | 6.29 | 3600 | 0.5991 | 57.3876 | | 0.0008 | 6.47 | 3700 | 0.6012 | 57.6017 | | 0.0014 | 6.64 | 3800 | 0.6002 | 57.8158 | | 0.001 | 6.82 | 3900 | 0.6006 | 57.8158 | | 0.0013 | 6.99 | 4000 | 0.6005 | 57.3876 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0 - Datasets 2.11.0 - Tokenizers 0.13.3