--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer datasets: - conllpp metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-multilingual-cased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conllpp type: conllpp config: conllpp split: validation args: conllpp metrics: - name: Precision type: precision value: 0.9282027217268888 - name: Recall type: recall value: 0.9339881008593823 - name: F1 type: f1 value: 0.9310864244021841 - name: Accuracy type: accuracy value: 0.9838898310040348 --- # distilbert-base-multilingual-cased-finetuned-ner This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on the conllpp dataset. It achieves the following results on the evaluation set: - Loss: 0.0632 - Precision: 0.9282 - Recall: 0.9340 - F1: 0.9311 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.237 | 1.0 | 878 | 0.0732 | 0.9083 | 0.9188 | 0.9135 | 0.9794 | | 0.0533 | 2.0 | 1756 | 0.0648 | 0.9265 | 0.9274 | 0.9269 | 0.9827 | | 0.0303 | 3.0 | 2634 | 0.0632 | 0.9282 | 0.9340 | 0.9311 | 0.9839 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3