--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: microsoft-resnet-50-cartoon-emotion-detection results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6697247706422018 - name: Precision type: precision value: 0.5798801171844885 - name: Recall type: recall value: 0.6697247706422018 - name: F1 type: f1 value: 0.6086361803243947 --- # microsoft-resnet-50-cartoon-emotion-detection This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0059 - Accuracy: 0.6697 - Precision: 0.5799 - Recall: 0.6697 - F1: 0.6086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 0.97 | 8 | 1.3833 | 0.2477 | 0.2054 | 0.2477 | 0.2042 | | 1.4276 | 1.97 | 16 | 1.3711 | 0.3028 | 0.1982 | 0.3028 | 0.1932 | | 1.4046 | 2.97 | 24 | 1.3550 | 0.3028 | 0.0917 | 0.3028 | 0.1407 | | 1.3817 | 3.97 | 32 | 1.3375 | 0.3119 | 0.2852 | 0.3119 | 0.1592 | | 1.3562 | 4.97 | 40 | 1.3179 | 0.3211 | 0.4337 | 0.3211 | 0.1785 | | 1.3562 | 5.97 | 48 | 1.2991 | 0.3761 | 0.5442 | 0.3761 | 0.2741 | | 1.3624 | 6.97 | 56 | 1.2751 | 0.4495 | 0.5593 | 0.4495 | 0.3659 | | 1.2914 | 7.97 | 64 | 1.2494 | 0.4771 | 0.5442 | 0.4771 | 0.4094 | | 1.2518 | 8.97 | 72 | 1.2279 | 0.5046 | 0.5525 | 0.5046 | 0.4430 | | 1.2085 | 9.97 | 80 | 1.1905 | 0.5321 | 0.5134 | 0.5321 | 0.4579 | | 1.2085 | 10.97 | 88 | 1.1602 | 0.5505 | 0.5151 | 0.5505 | 0.4872 | | 1.1865 | 11.97 | 96 | 1.1307 | 0.5963 | 0.5969 | 0.5963 | 0.5416 | | 1.122 | 12.97 | 104 | 1.1037 | 0.5872 | 0.5069 | 0.5872 | 0.5206 | | 1.0812 | 13.97 | 112 | 1.0797 | 0.5688 | 0.4868 | 0.5688 | 0.5068 | | 1.0449 | 14.97 | 120 | 1.0712 | 0.6239 | 0.5269 | 0.6239 | 0.5641 | | 1.0449 | 15.97 | 128 | 1.0425 | 0.6239 | 0.5123 | 0.6239 | 0.5517 | | 1.0458 | 16.97 | 136 | 1.0346 | 0.6239 | 0.6487 | 0.6239 | 0.5782 | | 1.004 | 17.97 | 144 | 1.0264 | 0.6330 | 0.5472 | 0.6330 | 0.5721 | | 0.9806 | 18.97 | 152 | 1.0041 | 0.6606 | 0.6334 | 0.6606 | 0.6069 | | 0.97 | 19.97 | 160 | 1.0059 | 0.6697 | 0.5799 | 0.6697 | 0.6086 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1 - Tokenizers 0.13.1