--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: resnet-152-fv-finetuned-memess results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.767387944358578 - name: Precision type: precision value: 0.7651125602674349 - name: Recall type: recall value: 0.767387944358578 - name: F1 type: f1 value: 0.7646848616766787 --- # resnet-152-fv-finetuned-memess This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6281 - Accuracy: 0.7674 - Precision: 0.7651 - Recall: 0.7674 - F1: 0.7647 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.5902 | 0.99 | 20 | 1.5519 | 0.4938 | 0.3491 | 0.4938 | 0.3529 | | 1.4694 | 1.99 | 40 | 1.3730 | 0.4892 | 0.4095 | 0.4892 | 0.3222 | | 1.3129 | 2.99 | 60 | 1.2052 | 0.5301 | 0.3504 | 0.5301 | 0.4005 | | 1.1831 | 3.99 | 80 | 1.1142 | 0.5587 | 0.4077 | 0.5587 | 0.4444 | | 1.0581 | 4.99 | 100 | 0.9930 | 0.6012 | 0.5680 | 0.6012 | 0.5108 | | 0.9464 | 5.99 | 120 | 0.9263 | 0.6507 | 0.6200 | 0.6507 | 0.6029 | | 0.8581 | 6.99 | 140 | 0.8400 | 0.6917 | 0.6645 | 0.6917 | 0.6638 | | 0.7739 | 7.99 | 160 | 0.7829 | 0.7087 | 0.6918 | 0.7087 | 0.6845 | | 0.6762 | 8.99 | 180 | 0.7512 | 0.7318 | 0.7206 | 0.7318 | 0.7189 | | 0.6162 | 9.99 | 200 | 0.7409 | 0.7264 | 0.7244 | 0.7264 | 0.7241 | | 0.5546 | 10.99 | 220 | 0.6936 | 0.7465 | 0.7429 | 0.7465 | 0.7395 | | 0.4633 | 11.99 | 240 | 0.6779 | 0.7473 | 0.7393 | 0.7473 | 0.7412 | | 0.4373 | 12.99 | 260 | 0.6736 | 0.7573 | 0.7492 | 0.7573 | 0.7523 | | 0.4074 | 13.99 | 280 | 0.6534 | 0.7566 | 0.7516 | 0.7566 | 0.7528 | | 0.39 | 14.99 | 300 | 0.6521 | 0.7651 | 0.7603 | 0.7651 | 0.7608 | | 0.3766 | 15.99 | 320 | 0.6499 | 0.7682 | 0.7607 | 0.7682 | 0.7630 | | 0.3507 | 16.99 | 340 | 0.6497 | 0.7697 | 0.7686 | 0.7697 | 0.7686 | | 0.3589 | 17.99 | 360 | 0.6519 | 0.7535 | 0.7485 | 0.7535 | 0.7502 | | 0.3261 | 18.99 | 380 | 0.6449 | 0.7589 | 0.7597 | 0.7589 | 0.7585 | | 0.3234 | 19.99 | 400 | 0.6281 | 0.7674 | 0.7651 | 0.7674 | 0.7647 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1.dev0 - Tokenizers 0.13.1