--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - precision - recall - f1 model-index: - name: resnet152-FV-finetuned-memes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7557959814528593 - name: Precision type: precision value: 0.7556690736625777 - name: Recall type: recall value: 0.7557959814528593 - name: F1 type: f1 value: 0.7545674798253312 --- # resnet152-FV-finetuned-memes This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6772 - Accuracy: 0.7558 - Precision: 0.7557 - Recall: 0.7558 - F1: 0.7546 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.5739 | 0.99 | 20 | 1.5427 | 0.4521 | 0.3131 | 0.4521 | 0.2880 | | 1.4353 | 1.99 | 40 | 1.3786 | 0.4490 | 0.3850 | 0.4490 | 0.2791 | | 1.3026 | 2.99 | 60 | 1.2734 | 0.4799 | 0.3073 | 0.4799 | 0.3393 | | 1.1579 | 3.99 | 80 | 1.1378 | 0.5278 | 0.4300 | 0.5278 | 0.4143 | | 1.0276 | 4.99 | 100 | 1.0231 | 0.5734 | 0.4497 | 0.5734 | 0.4865 | | 0.8826 | 5.99 | 120 | 0.9228 | 0.6252 | 0.5983 | 0.6252 | 0.5637 | | 0.766 | 6.99 | 140 | 0.8441 | 0.6662 | 0.6474 | 0.6662 | 0.6320 | | 0.6732 | 7.99 | 160 | 0.8009 | 0.6901 | 0.6759 | 0.6901 | 0.6704 | | 0.5653 | 8.99 | 180 | 0.7535 | 0.7218 | 0.7141 | 0.7218 | 0.7129 | | 0.4957 | 9.99 | 200 | 0.7317 | 0.7257 | 0.7248 | 0.7257 | 0.7200 | | 0.4534 | 10.99 | 220 | 0.6808 | 0.7434 | 0.7405 | 0.7434 | 0.7390 | | 0.3792 | 11.99 | 240 | 0.6949 | 0.7450 | 0.7454 | 0.7450 | 0.7399 | | 0.3489 | 12.99 | 260 | 0.6746 | 0.7496 | 0.7511 | 0.7496 | 0.7474 | | 0.3113 | 13.99 | 280 | 0.6637 | 0.7573 | 0.7638 | 0.7573 | 0.7579 | | 0.2947 | 14.99 | 300 | 0.6451 | 0.7589 | 0.7667 | 0.7589 | 0.7610 | | 0.2776 | 15.99 | 320 | 0.6754 | 0.7543 | 0.7565 | 0.7543 | 0.7525 | | 0.2611 | 16.99 | 340 | 0.6808 | 0.7550 | 0.7607 | 0.7550 | 0.7529 | | 0.2428 | 17.99 | 360 | 0.7005 | 0.7457 | 0.7497 | 0.7457 | 0.7404 | | 0.2346 | 18.99 | 380 | 0.6597 | 0.7573 | 0.7642 | 0.7573 | 0.7590 | | 0.2367 | 19.99 | 400 | 0.6772 | 0.7558 | 0.7557 | 0.7558 | 0.7546 | ### Framework versions - Transformers 4.24.0.dev0 - Pytorch 1.11.0+cu102 - Datasets 2.6.1.dev0 - Tokenizers 0.13.1