--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet50-finetuned-memes results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.5741885625965997 - task: type: image-classification name: Image Classification dataset: type: custom name: custom split: test metrics: - type: f1 value: 0.47811617701687364 name: F1 - type: precision value: 0.43689216537139497 name: Precision - type: recall value: 0.5695517774343122 name: Recall --- # resnet50-finetuned-memes This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0625 - Accuracy: 0.5742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00012 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.4795 | 0.99 | 40 | 1.4641 | 0.4382 | | 1.3455 | 1.99 | 80 | 1.3281 | 0.4389 | | 1.262 | 2.99 | 120 | 1.2583 | 0.4583 | | 1.1975 | 3.99 | 160 | 1.1978 | 0.4876 | | 1.1358 | 4.99 | 200 | 1.1614 | 0.5139 | | 1.1273 | 5.99 | 240 | 1.1316 | 0.5379 | | 1.0379 | 6.99 | 280 | 1.1024 | 0.5464 | | 1.041 | 7.99 | 320 | 1.0927 | 0.5580 | | 0.9952 | 8.99 | 360 | 1.0790 | 0.5541 | | 1.0146 | 9.99 | 400 | 1.0625 | 0.5742 | ### Framework versions - Transformers 4.22.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1