--- license: apache-2.0 base_model: microsoft/swinv2-base-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7209302325581395 --- # vit-base-patch16-224 This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window8-256](https://huggingface.co/microsoft/swinv2-base-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5932 - Accuracy: 0.7209 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.96 | 6 | 0.7424 | 0.3488 | | 0.7374 | 1.92 | 12 | 0.5932 | 0.7209 | | 0.7374 | 2.88 | 18 | 0.5843 | 0.7209 | | 0.5783 | 4.0 | 25 | 0.5996 | 0.7209 | | 0.5358 | 4.96 | 31 | 0.6147 | 0.7209 | | 0.5358 | 5.92 | 37 | 0.6159 | 0.7209 | | 0.5745 | 6.88 | 43 | 0.6091 | 0.7209 | | 0.5325 | 8.0 | 50 | 0.6067 | 0.7209 | | 0.5325 | 8.96 | 56 | 0.6047 | 0.7209 | | 0.524 | 9.6 | 60 | 0.6046 | 0.7209 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu118 - Datasets 2.20.0 - Tokenizers 0.19.1