--- library_name: transformers base_model: bert-base-chinese tags: - generated_from_trainer metrics: - accuracy model-index: - name: bert-base-chinese-finetuned-paragraph_extraction-retrain3 results: [] --- # bert-base-chinese-finetuned-paragraph_extraction-retrain3 This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2350 - Accuracy: 0.9538 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 0.1994 | 0.1842 | 2000 | 0.2304 | 0.9395 | | 0.2139 | 0.3684 | 4000 | 0.3441 | 0.9242 | | 0.2433 | 0.5526 | 6000 | 0.2450 | 0.9528 | | 0.1658 | 0.7369 | 8000 | 0.1913 | 0.9548 | | 0.1741 | 0.9211 | 10000 | 0.2350 | 0.9538 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1