--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - trl - cpo - generated_from_trainer model-index: - name: llama3.1-cpo_j-full-0911 results: [] --- # llama3.1-cpo_j-full-0911 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.4373 - Rewards/chosen: -14.1493 - Rewards/rejected: -15.5710 - Rewards/accuracies: 0.6543 - Rewards/margins: 1.4217 - Logps/rejected: -155.7095 - Logps/chosen: -141.4926 - Logits/rejected: -0.1136 - Logits/chosen: -0.1476 - Nll Loss: 0.1725 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| | 1.4367 | 0.9986 | 432 | 1.3926 | -17.0679 | -18.0962 | 0.6565 | 1.0283 | -180.9624 | -170.6792 | -0.4080 | -0.4373 | 0.3200 | | 0.5472 | 1.9994 | 865 | 1.2973 | -16.2909 | -17.5852 | 0.6587 | 1.2944 | -175.8523 | -162.9086 | -0.5434 | -0.5688 | 0.2148 | | 0.2244 | 2.9980 | 1297 | 1.3861 | -15.7105 | -17.2195 | 0.6565 | 1.5089 | -172.1945 | -157.1052 | -0.3428 | -0.3715 | 0.2034 | | 0.1472 | 3.9988 | 1730 | 1.4029 | -14.6462 | -16.1385 | 0.6522 | 1.4923 | -161.3849 | -146.4623 | -0.2701 | -0.3029 | 0.1876 | | 0.1143 | 4.9928 | 2160 | 1.4373 | -14.1493 | -15.5710 | 0.6543 | 1.4217 | -155.7095 | -141.4926 | -0.1136 | -0.1476 | 0.1725 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.19.1