--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B-Instruct tags: - alignment-handbook - trl - cpo - generated_from_trainer - trl - cpo - generated_from_trainer datasets: - princeton-nlp/llama3-ultrafeedback model-index: - name: llama3.1-cpo_j-full-0912 results: [] --- # llama3.1-cpo_j-full-0912 This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback dataset. It achieves the following results on the evaluation set: - Loss: 1.4395 - Rewards/chosen: -16.1609 - Rewards/rejected: -16.9344 - Rewards/accuracies: 0.6326 - Rewards/margins: 0.7735 - Logps/rejected: -169.3439 - Logps/chosen: -161.6093 - Logits/rejected: -0.3578 - Logits/chosen: -0.3883 - Nll Loss: 0.2841 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:| | 1.7848 | 0.2311 | 100 | 1.6452 | -15.3752 | -15.7662 | 0.5804 | 0.3910 | -157.6625 | -153.7521 | -0.3516 | -0.3794 | 0.2719 | | 1.5276 | 0.4623 | 200 | 1.5229 | -15.8100 | -16.4430 | 0.6043 | 0.6331 | -164.4303 | -158.0997 | -0.3983 | -0.4237 | 0.2748 | | 1.4811 | 0.6934 | 300 | 1.4640 | -16.0706 | -16.8001 | 0.6130 | 0.7296 | -168.0013 | -160.7057 | -0.4069 | -0.4339 | 0.2804 | | 1.4642 | 0.9246 | 400 | 1.4429 | -16.1577 | -16.9120 | 0.6304 | 0.7544 | -169.1204 | -161.5765 | -0.3509 | -0.3812 | 0.2845 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.19.1