--- language: - zh license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - formospeech/hat_asr_aligned model-index: - name: Whisper Medium Hakka Condenser results: [] --- # Whisper Medium Hakka Condenser This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the HAT ASR Aligned dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0191 - eval_cer: 0.6184 - eval_runtime: 2123.8167 - eval_samples_per_second: 2.147 - eval_steps_per_second: 0.134 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1521 - training_steps: 15215 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1