--- language: - zh license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - formospeech/tat_asr_aligned model-index: - name: Whisper Tiny Taiwanese Condenser results: [] --- # Whisper Tiny Taiwanese Condenser This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the TAT ASR Aligned dataset. It achieves the following results on the evaluation set: - eval_loss: 0.4771 - eval_cer: 11.2065 - eval_runtime: 1324.688 - eval_samples_per_second: 4.239 - eval_steps_per_second: 0.133 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 681 - training_steps: 6810 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1