--- base_model: jjzha/jobbert_knowledge_extraction tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: tok_train_info results: [] --- # tok_train_info This model is a fine-tuned version of [jjzha/jobbert_knowledge_extraction](https://huggingface.co/jjzha/jobbert_knowledge_extraction) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2616 - Precision: 0.5755 - Recall: 0.5980 - F1: 0.5865 - Accuracy: 0.9072 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 20 | 0.4390 | 0.3790 | 0.4608 | 0.4159 | 0.8845 | | No log | 2.0 | 40 | 0.2831 | 0.5321 | 0.5686 | 0.5498 | 0.9034 | | No log | 3.0 | 60 | 0.2616 | 0.5755 | 0.5980 | 0.5865 | 0.9072 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3