--- license: other base_model: stabilityai/stable-diffusion-3-medium-diffusers tags: - sd3 - sd3-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora - lycoris inference: true widget: - text: A swift and agile elven archer perched in a tree, nocking an arrow. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_1_0.png - text: A cyberpunk hunter in neon-lit city alleys, armed with a high-tech rifle. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_2_0.png - text: A mighty fantasy knight in gleaming armor, wielding a sword and shield. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_3_0.png - text: >- A space pirate captain standing on the bridge of a starship, ready for adventure. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_4_0.png - text: A powerful demonic sorcerer casting a spell in a dark, mysterious chamber. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_5_0.png - text: >- A friendly robotic assistant with a sleek design, helping a player navigate a game. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_6_0.png - text: A stealthy ninja warrior crouching in the shadows, ready to strike. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_7_0.png - text: >- A group of survivors in a post-apocalyptic world, fending off a zombie horde. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_8_0.png - text: >- A brave dragon tamer soaring through the sky on the back of a majestic dragon. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_9_0.png - text: >- A wise medieval wizard in a towering castle, studying ancient tomes of magic. parameters: negative_prompt: blurry, cropped, ugly output: url: ./assets/image_10_0.png pipeline_tag: text-to-image --- # SD3M/simpletuner-lora (Text2Img) This is a LyCORIS adapter minicing the art style of John Singer Sargent, derived from [stabilityai/stable-diffusion-3-medium-diffusers](https://huggingface.co/stabilityai/stable-diffusion-3-medium-diffusers). The main validation prompt used during training: ``` A swift and agile elven archer perched in a tree, nocking an arrow. ``` ## Validation settings - CFG: `3.0` - CFG Rescale: `0.0` - Steps: `20` - Sampler: `FlowMatchEulerDiscreteScheduler` - Seed: `42` - Resolution: `1024x1024` - Skip-layer guidance: `None` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery:
A swift and agile elven archer perched in a tree, nocking an arrow

prompt: A swift and agile elven archer perched in a tree, nocking an arrow.

A powerful demonic sorcerer casting a spell in a dark, mysterious chamber

prompt: A powerful demonic sorcerer casting a spell in a dark, mysterious chamber.

A wise medieval wizard in a towering castle, studying ancient tomes of magic

prompt: A wise medieval wizard in a towering castle, studying ancient tomes of magic.

The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 10 - Training steps: 10000 - Learning rate: 0.0001 - Learning rate schedule: polynomial - Warmup steps: 100 - Max grad norm: 0.01 - Effective batch size: 1 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Gradient checkpointing: True - Prediction type: flow-matching (extra parameters=['shift=3']) - Optimizer: adamw_bf16 - Trainable parameter precision: Pure BF16 - Caption dropout probability: 10.0% ### LyCORIS Config: ```json { "algo": "lokr", "multiplier": 1.0, "linear_dim": 10000, "linear_alpha": 1, "factor": 16, "apply_preset": { "target_module": [ "Attention", "FeedForward" ], "module_algo_map": { "Attention": { "factor": 16 }, "FeedForward": { "factor": 8 } } } } ``` ## Datasets ### wikiart_sargent - Repeats: 0 - Total number of images: 920 - Total number of aspect buckets: 4 - Resolution: 1.048576 megapixels - Cropped: False - Crop style: None - Crop aspect: None - Used for regularisation data: No ## Inference ```python import torch from diffusers import DiffusionPipeline from lycoris import create_lycoris_from_weights def download_adapter(repo_id: str): import os from huggingface_hub import hf_hub_download adapter_filename = "pytorch_lora_weights.safetensors" cache_dir = os.environ.get('HF_PATH', os.path.expanduser('~/.cache/huggingface/hub/models')) cleaned_adapter_path = repo_id.replace("/", "_").replace("\\", "_").replace(":", "_") path_to_adapter = os.path.join(cache_dir, cleaned_adapter_path) path_to_adapter_file = os.path.join(path_to_adapter, adapter_filename) os.makedirs(path_to_adapter, exist_ok=True) hf_hub_download( repo_id=repo_id, filename=adapter_filename, local_dir=path_to_adapter ) return path_to_adapter_file model_id = 'stabilityai/stable-diffusion-3-medium-diffusers' adapter_repo_id = 'jimchoi/simpletuner-lora' adapter_filename = 'pytorch_lora_weights.safetensors' adapter_file_path = download_adapter(repo_id=adapter_repo_id) pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16 lora_scale = 1.0 wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_file_path, pipeline.transformer) wrapper.merge_to() prompt = "A swift and agile elven archer perched in a tree, nocking an arrow." negative_prompt = 'blurry, cropped, ugly' ## Optional: quantise the model to save on vram. ## Note: The model was quantised during training, and so it is recommended to do the same during inference time. from optimum.quanto import quantize, freeze, qint8 quantize(pipeline.transformer, weights=qint8) freeze(pipeline.transformer) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level image = pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=20, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42), width=1024, height=1024, guidance_scale=3.0, ).images[0] image.save("output.png", format="PNG") ```