--- license: other base_model: "black-forest-labs/FLUX.1-dev" tags: - flux - flux-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora inference: true widget: - text: 'unconditional (blank prompt)' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_0_0.png - text: 'Dr. Seuss during a book signing event, seated at a table with an open book and pen in hand, his characteristic white beard, clear-rimmed glasses, and whimsical bow tie complementing his calm, attentive expression, all within the literary setting of a bookstore, reflecting his enduring connection with readers and the joy his work brought to many.' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_1_0.png - text: 'Anime picture of famed author Dr. Seuss in a Studio Ghibli style' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_2_0.png - text: 'Dr. Seuss in a leather jacket riding a Harley Davidson Motorcycle' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_3_0.png - text: 'Famous author Dr. Seuss holding a chainsaw while riding around on a unicycle, vintage TV still from the Dick Van Dyke show' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_4_0.png - text: 'A photograph of Dr. Seuss riding in a horse-drawn carriage' parameters: negative_prompt: 'blurry, cropped, ugly' output: url: ./assets/image_5_0.png --- # flux-training-seuss-lora-bsz-4 This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). The main validation prompt used during training was: ``` A photograph of Dr. Seuss riding in a horse-drawn carriage ``` ## Validation settings - CFG: `3.5` - CFG Rescale: `0.0` - Steps: `15` - Sampler: `None` - Seed: `42` - Resolution: `1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). You can find some example images in the following gallery: The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 0 - Training steps: 200 - Learning rate: 0.0008 - Effective batch size: 4 - Micro-batch size: 4 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: flow-matching - Rescaled betas zero SNR: False - Optimizer: adamw_bf16 - Precision: bf16 - Quantised: No - Xformers: Not used - LoRA Rank: 16 - LoRA Alpha: None - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### default_dataset_arb - Repeats: 100 - Total number of images: 4 - Total number of aspect buckets: 3 - Resolution: 1.5 megapixels - Cropped: False - Crop style: None - Crop aspect: None ### default_dataset - Repeats: 100 - Total number of images: 3 - Total number of aspect buckets: 1 - Resolution: 1.048576 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### default_dataset_512 - Repeats: 100 - Total number of images: 4 - Total number of aspect buckets: 1 - Resolution: 0.262144 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### default_dataset_576 - Repeats: 100 - Total number of images: 4 - Total number of aspect buckets: 1 - Resolution: 0.331776 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### default_dataset_640 - Repeats: 100 - Total number of images: 4 - Total number of aspect buckets: 1 - Resolution: 0.4096 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### default_dataset_704 - Repeats: 100 - Total number of images: 4 - Total number of aspect buckets: 1 - Resolution: 0.495616 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### default_dataset_768 - Repeats: 100 - Total number of images: 3 - Total number of aspect buckets: 1 - Resolution: 0.589824 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### default_dataset_832 - Repeats: 100 - Total number of images: 3 - Total number of aspect buckets: 1 - Resolution: 0.692224 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### default_dataset_896 - Repeats: 100 - Total number of images: 3 - Total number of aspect buckets: 1 - Resolution: 0.802816 megapixels - Cropped: True - Crop style: random - Crop aspect: square ### default_dataset_960 - Repeats: 100 - Total number of images: 3 - Total number of aspect buckets: 1 - Resolution: 0.9216 megapixels - Cropped: True - Crop style: random - Crop aspect: square ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/FLUX.1-dev' adapter_id = 'jimmycarter/flux-training-seuss-lora-bsz-4' pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.load_lora_weights(adapter_id) prompt = "A photograph of Dr. Seuss riding in a horse-drawn carriage" pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, num_inference_steps=15, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1024, height=1024, guidance_scale=3.5, ).images[0] image.save("output.png", format="PNG") ```