--- license: apache-2.0 language: ga tags: - generated_from_trainer - irish datasets: - wikiann metrics: - precision - recall - f1 - accuracy model-index: - name: electra-base-irish-cased-discriminator-v1-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: wikiann type: wikiann args: ga metrics: - name: Precision type: precision value: 0.5413922859830668 - name: Recall type: recall value: 0.5161434977578475 - name: F1 type: f1 value: 0.5284664830119375 - name: Accuracy type: accuracy value: 0.8419817960026273 widget: - text: "Saolaíodh Pádraic Ó Conaire i nGaillimh sa bhliain 1882." --- # electra-base-irish-cased-discriminator-v1-finetuned-ner This model is a fine-tuned version of [DCU-NLP/electra-base-irish-cased-generator-v1](https://huggingface.co/DCU-NLP/electra-base-irish-cased-generator-v1) on the wikiann dataset. It achieves the following results on the evaluation set: - Loss: 0.6654 - Precision: 0.5414 - Recall: 0.5161 - F1: 0.5285 - Accuracy: 0.8420 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 63 | 1.3231 | 0.1046 | 0.0417 | 0.0596 | 0.5449 | | No log | 2.0 | 126 | 0.9710 | 0.3879 | 0.3359 | 0.3600 | 0.7486 | | No log | 3.0 | 189 | 0.7723 | 0.4713 | 0.4457 | 0.4582 | 0.8152 | | No log | 4.0 | 252 | 0.6892 | 0.5257 | 0.4910 | 0.5078 | 0.8347 | | No log | 5.0 | 315 | 0.6654 | 0.5414 | 0.5161 | 0.5285 | 0.8420 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3