from typing import Dict, List, Any from transformers import NougatProcessor, VisionEncoderDecoderModel import torch # check for GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EndpointHandler: def __init__(self, path=""): # load the model self.processor = NougatProcessor.from_pretrained(path) self.model = VisionEncoderDecoderModel.from_pretrained(path) # move model to device self.model.to(device) # self.decoder_input_ids = self.processor.tokenizer( # "", add_special_tokens=False, return_tensors="pt" # ).input_ids def __call__(self, data): inputs = data.pop("inputs", data) # preprocess the input pixel_values = self.processor(inputs, return_tensors="pt").pixel_values print(type(pixel_values)) # forward pass outputs = self.model.generate( pixel_values.to(device), min_length = 1, # decoder_input_ids=self.decoder_input_ids.to(device), max_length=3584, # early_stopping=True, # pad_token_id=self.processor.tokenizer.pad_token_id, # eos_token_id=self.processor.tokenizer.eos_token_id, # use_cache=True, # num_beams=1, bad_words_ids=[[self.processor.tokenizer.unk_token_id]], # return_dict_in_generate=True, ) # process output prediction = self.processor.batch_decode(outputs, skip_special_tokens=True)[0] prediction = self.processor.post_process_generation(prediction, fix_markdown=False) return prediction