--- language: - pt license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Large v2 Portuguese results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 pt type: mozilla-foundation/common_voice_11_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 5.590020342630419 --- # Whisper Large V2 Portuguese 🇧🇷🇵🇹 Bem-vindo ao **whisper large-v2** para transcrição em português 👋🏻 Transcribe Portuguese audio to text with the highest precision. - Loss: 0.282 - Wer: 5.590 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the [mozilla-foundation/common_voice_11](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0) dataset. If you want a lighter model, you may be interested in [jlondonobo/whisper-medium-pt](https://huggingface.co/jlondonobo/whisper-medium-pt). It achieves faster inference with almost no difference in WER. ### Comparable models Reported **WER** is based on the evaluation subset of Common Voice. | Model | WER | # Parameters | |--------------------------------------------------|:--------:|:------------:| | [jlondonobo/whisper-large-v2-pt](https://huggingface.co/jlondonobo/whisper-large-v2-pt) | **5.590** 🤗 | 1550M | | [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) | 6.300 | 1550M | | [jlondonobo/whisper-medium-pt](https://huggingface.co/jlondonobo/whisper-medium-pt) | 6.579 | 769M | | [jonatasgrosman/wav2vec2-large-xlsr-53-portuguese](https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-portuguese) | 11.310 | 317M | | [Edresson/wav2vec2-large-xlsr-coraa-portuguese](https://huggingface.co/Edresson/wav2vec2-large-xlsr-coraa-portuguese) | 20.080 | 317M | ### Training hyperparameters We used the following hyperparameters for training: - `learning_rate`: 1e-05 - `train_batch_size`: 16 - `eval_batch_size`: 8 - `seed`: 42 - `gradient_accumulation_steps`: 2 - `total_train_batch_size`: 32 - `optimizer`: Adam with betas=(0.9,0.999) and epsilon=1e-08 - `lr_scheduler_type`: linear - `lr_scheduler_warmup_steps`: 500 - `training_steps`: 5000 - `mixed_precision_training`: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0828 | 1.09 | 1000 | 0.1868 | 6.778 | | 0.0241 | 3.07 | 2000 | 0.2057 | 6.109 | | 0.0084 | 5.06 | 3000 | 0.2367 | 6.029 | | 0.0015 | 7.04 | 4000 | 0.2469 | 5.709 | | 0.0009 | 9.02 | 5000 | 0.2821 | 5.590 🤗| ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2